| <u> </u> | 073 | |-------------------------------|------------| | (ACCESSION NUMBER) | (THRU) | | 182 | | | (PAGES) | (CODE) | | CR-65218 | 49 | | (NASA CR OR TMX OR AD NUMBER) | (CATEGORY) | GPO PRICE \$ _____ Hard copy (HC) 5.00 Microfiche (MF) 1.25 ff 653 July 65 SOLAR ACTIVITY CATALOGUE VOLUME 2 CATALOGUE OF SOLAR ACTIVITY DURING 1957 BY FRED C. JONAH LTV ASTRONAUTICS DIVISION HELEN DODSON-PRINCE AND E. RUTH HEDEMAN McMATH-HULBERT OBSERVATORY OF THE UNIVERSITY OF MICHIGAN Report No. 00.538 6 January 1965 Prepared under Contract NAS 9-2469 with LTV Astronautics Division | | | TABLE OF CONTENTS | | |--------------|------|---|-----------------| | | | | Page | | INTRO | ODUC | CTION | 2.1 | | GENE | RAL | DISCUSSION | | | | ı. | Major Solar Flares During 1957 | 2.2 | | | 2. | Sunspots During 1957 | 2.3 | | | 3. | Important Plage Regions During 1957 | 2.4 | | | 4. | Important Radio Emissions from the Sun During 1957 | 2.6 | | | 5• | Geomagnetic Storms During 1957 | 2.8 | | | 6. | Solar Terrestrial Effects During 1957 | 2.8 | | | 7. | Balloon Flights | 2.9 | | | 8. | Chronological Catalogue of Major Solar Events
During 1957 | 2.9 | | | | urces and References for 1957 Solar Activity calogue | 2.11 | | 2 . I | | CATALOGUE OF MAJOR SOLAR FLARES 1957 | | | | | Description of Table 2.I | 2.I-i | | | | Catalogue - Table 2.I | 2 .I-1 | | | | IAU Major Flares Reduced to Importance ≤ 2 in the McMath Working List - Table IA | 2 .1- 3 | | | | Flares Reported by Only One Observatory, IAU Importance 2+ - Table IB | 2 .I -3 | | | | Importance 2+ Flares Not Listed as Major
Flares - Table IC | 2 .1- 3 | | 2 .II | | CATALOGUE OF IMPORTANT SUNSPOT GROUPS 1957 | | | | | Description of Table 2.II | 2.II-i | | | | Catalogue Table 2.II | 2.II-1 | | | | Zurich Classification of Sunspots | 2 .II- 9 | | | | Mt. Wilson Magnetic Classification of Sunspots | 2 .II- 9 | | | | Page | |---------------|---|-------------------| | 2 .III | CATALOGUE OF PLAGE DATA FOR 1957 | | | | Description of Table 2.III | 2.III-i | | | Catalogue Table 2.III | 2.III-1 | | 2 .IV | CATALOGUE OF IMPORTANT RADIO EMISSIONS FROM THE SUN DURING 1957 | | | | Description of Table 2.IV | 2. IV- i | | | Classification of Single-Frequency Solar Radio
Bursts and Enhancements | 2.IV-iv | | | Table 2.IV-i Solar Radio Observatories, with Symbols, frequencies, and normal operating times during 1957 | 2. IV-v | | | Figure 2.IV-1 - Solar Radio Observatories - Normal Observing Times During the First Quarter, 1957 | 2.IV-vi | | | Figure 2.IV-2 - Solar Radio Observatories -
Normal Observing Times During the Fourth Quarter,
1957 | 2.IV-vii | | 2 .V | CATALOGUE OF GEOMAGNETIC STORMS DURING 1957 | | | | Description of Table 2.V | 3. V- i | | | Catalogue Table 2.V | 3.V-1 | | | Major Geomagnetic Storms During 1957 (Table V-A) | 3.V-4 | | 2 .VI | CATALOGUE OF SOLAR-TERRESTRIAL EFFECTS DURING 1957 | | | | Description of Table 2.VI | 2. VI- i | | | Catalogue - Table 2.VI | 2.VI-1 | | 2 .VII | CATALOGUE OF IMPORTANT BALLOON FLIGHTS DURING 1957 | | | | Description of Table 2.VII | 2.VII-i | | | References for Balloon Flight Data | 2.VII-iii | | | Catalogue - Table 2.VII | 2. VII- 1 | | 2.VIII | CHRONOLOGICAL CATALOGUE MAJOR SOLAR EVENTS 1957 | | | | Description of Table 2.VIII | 2.VIII-i | | | Catalogue - Table 2.VIII | 2. VIII- 1 | #### CATALOGUE OF SOLAR ACTIVITY FOR THE YEAR 1957 #### INTRODUCTION The data compiled in this volume of the catalogue covers the Greenwich year 1957. This covers synodic rotations of the sun 1383 through 1394; and parts of rotation 1382 which commenced on December 27.07, 1956, and rotation 1395 which started on December 16.63, 1957. The solar activity data have been arranged in eight tables, or catalogues: - I. Catalogue of Major Solar Flares and Related Terrestrial Effects - II. Catalogue of Important Sunspot Groups - III. Catalogue of Important Plage Regions - IV. Catalogue of Outstanding Solar Radio Emissions - V. Catalogue of Geomagnetic Storms - VI. Catalogue of Important Solar-Terrestrial Effects - VII. Catalogue of Balloon Flights - VIII. Chronological Catalogue of Major Solar Events There is a considerable amount of duplication between the different catalogues. This has been done to keep cross references at a minimum without making the number of columns unwieldy. Each of these catalogues is described in detail in the subsequent sections and in the description of the tables. The data have been obtained from many sources. These are listed in Table 2.7, of references, pages 2.11 - 2.13. This work has been carried out at LTV Astronautics Division under NASA Contract NAS 9-2469. Dr. Helen Dodson-Prince and Miss E. Ruth Hedeman prepared the data for the Chronological Catalogue (Table VIII). In addition, they have made valuable contributions to the other tables through discussions and data contributions. Their work was supported by the Office of Naval Research. We wish to express our appreciation to Dr. Howard for use of the Mt. Wilson daily work sheets of sunspot magnetic classifications. Miss Virginia Lincoln at the National Bureau of Standards, Central Radio Propogation Laboratory, has made valuable suggestions and data at the World Data Center A (airglow and ionospheric) available. Many of the authors listed in the reference table have generously supplied reprints of their papers and in some cases have made unpublished data available. Other scientists throughout the world have made valuable contributions through discussions and helpful suggestions during the period when many of the data were being obtained and the idea of a solar activity catalogue was generated. ### 1. Major Solar Flares During 1957 The IAU Quarterly Bulletin (reference 63) lists 3831 solar flares with importance ranging from 1 to 3+. Only 1374 of these flares were reported during the first six months of the year (before the start of the IGY) and 2457 during the second six months. During the similar periods of 1958, 2038 and 2232 flares were reported respectively. It is important to note that during the first six months of 1957 there was no flare patrol of the sun 31.1 per cent of the time while during the second six months the hours of no patrol had decreased to approximately 4.5 per cent of the time. During the corresponding periods of 1958 the hours of no patrol were 4.6 and 4.5 per cent of the time, respectively. | Month | Patrol b | y Months
Percent | | Number | Major | Flares
IAU | McM | |--------------------------------|--|--|----------------------------|------------------------|-----------------------|--------------------------|------------------------| | Month | Hours | Complete | 2+ | 3 | 3+ | 2+,3,3+ | 2+,3,3+ | | Jan. | 401.5 | 55•3 | 0 | 8 | 3 | 11 | 9 | | Feb. | 402.5 | 59 • 9 | Ö | 2 | 0 | 2 | ź | | Mar. | 482.0 | 64.7 | ĭ | ī | ō | 2 | ı | | Apr. | 473.0 | 65.6 | ō | 6 | 0 | 6 | 5 | | May | 577.0 | 77.5 | 0 | 0 | 0 | 0 | 0 | | June | 650.5 | 90•3 | 2 | 7 | 0 | 9 | 3 | | Total
1st
6 mos. | 2986.5 | 68.9 | 3 | 24 | 3 | 30 | 20 | | July Aug. Sept. Oct. Nov. Dec. | 730.0
732.0
710.0
657.0
669.0
661.0 | 98.1
98.3
98.6
88.3
92.3
88.8 | 4
4
5
1
2
4 | 6
5
17
7
5 | 1
2
2
1
2 | 11
11
24
9
9 | 6
7
14
4
2 | | Total
2nd
6 mos. | 4159.0 | 95•5 | 20 | 47 | 8 | 75 | 38 | | Total
1957 | 7145.5 | 82.2 | 23 | 71 | 11 | 105 | 58 | TABLE 2.1 Flare Patrol Hours and Major Flares During 1957 The number of nours and per cent of total time of flare patrol for each month, together with the number of major flares reported in the IAU Bulletin (reference 63), is given in Table 2.1. The McMath-Hulbert working list of flares (reference 12, second six months, and unpublished data for the first six months) reduced 10 of the IAU major flares reported during the first six months and 37 reported during the second six months to minor flare importance. The last column of Table 2.1 shows the number of 2+, 3, and 3+ flares in the McMath working list by months. In addition, the working list gives three flares with importance 2+, reported by a single observatory, two in July and one in November. These did not meet the catalogue requirement for major flare status, but are shown in Table 2.IB. The flares during the year 1957 that were reduced to minor flare status are listed in Table 2.IA. #### 2. Sunspots During 1957 Solar activity as indicated by the relative number of sunspot groups reached an all time high during 1957, with the highest relative sunspot number on September 21, of 334 and a monthly mean of 253.8 for October. Mt. Wilson observed 855 sunspot groups with a central meridian passage during 1957; 80 of these sunspot groups crossed the central meridian during October the month of solar maximum. The Royal Greenwich Observatory observed 624 sunspot groups that lasted for two or more days. In addition, they reported 164 groups that were seen on one day only for a total of 788 spot groups (reference 61). Our catalogue of <u>Important Sunspot Groups During 1957</u> lists 120 groups. This includes: 109 spot groups that during disk passage had a maximum area greater than 500 millionths of the visible solar hemisphere as reported in reference 61. Sixty-nine of these large spot groups did not produce a single major flare during disk passage. The remaining 40 large spots produced 89 of the major flares as shown in Table 2.2. | Number of | Number of | Total Number | |-------------------|-------------------|-----------------| | Large Spot Groups | Major Flares Each |
of Major Flares | | 69 | 0 | 0 | | 20 | 1 | 20 | | 9 | 2 | 18 | | 2 | 3 | 6 | | 3 | 4 | 12 | | 3 | 5 | 15 | | 3 | 6 | 18 | | 109 | | 89 | TABLE 2.2 Major Flare Distribution Among Large Sunspot Groups Nine small spot groups produced one major flare each, one small group produced two major flares, and one produced three. It was not possible to associate sunspot groups with the two remaining major flares. Twenty spot groups were given an average magnetic classification of γ or $\beta\gamma$ during disk passage by the Mt. Wilson Solar Observatory (reference 66, denoted by M in our catalogue). Of these, 19 also had a maximum area greater than 500 millionths during disk passage. Six of the L.M. spots did not produce a major flare during disk passage. The remaining 13 produced 42 major flares as shown in Table 2.3. | L.M. Spot | Number of | Total Number | |-----------|-------------------|-----------------| | Groups | Major Flares Each | of Major Flares | | 6 | 0 | 0 | | 4 | 1 | 4 | | 2 | 2 | 4 | | 1 | 3 | 3 | | 1 | 4 | 14 | | 3 | 5 | 15 | | ž | 6 | 12 | | 19 | | 42 | TABLE 2.3 Major Flare Distribution Among Large Magnetically Complex Sunspot Groups One spot group in our catalogue classified as a γ spot had a maximum area of 427 millionths (a mean area of 306) and did not produce a major flare. ## Important Plage Regions During 1957 Our catalogue of 77 important plage regions includes: - 3.1 All plages that produced one or more major solar flares (F) - 3.2 Plages that had a central meridian area of 10,000 millionths of the visible solar hemisphere (L) - 3.3 Plages that during disk passage had an average brightness of 3.5 or greater (B) - 3.4 Plages that produced 30 or more flares of importance 1 or greater during disk passage (N) We find that 104 of the major flares were associated with 49 plage regions as shown in Table 2.4. It was not possible to associate one major flare (No. 34) with a plage region. This flare reported by Moscow with importance 3 at S.10, E.43 is not included in the McMath-Hulbert working list. | Number of | Number of | Total Number | |---------------|-------------------|-----------------| | Plage Regions | Major Flares Each | of Major Flares | | 28 | 1 | 28 | | 8 | 2 | 16 | | 5 | 3 | 15 | | 2 | 4 | 8 | | 2 | 5 | 10 | | 3 | 6 | 18 | | 1 | 9 | 9 | | 49 | | 104 | TABLE 2.4 Major Flare Distribution Among Plage Regions We find 8 plages that satisfy the L, B, N conditions. Three of these plages did not produce major flares, the other 5 produced 22. Thirty-five plages produced 30 or more flares of importance equal to or greater than one, and all but 7 produced at least one major flare. In fact, the 28 flare productive plages produced 80 of the 105 major flares. | Age in
Rotations | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Total | |---------------------|-----|-----|-----|-----|----|----|----|---|----|-------| | No Plage
Regions | 15 | 11 | 10 | 6 | 1 | 3 | 2 | 0 | 1 | 49 | | Major Flares | 23 | 28 | 29 | 9 | 6 | 6 | 2 | 0 | 1 | 104 | | All Flares | 384 | 432 | 421 | 323 | 83 | 73 | 55 | 0 | 24 | 1795 | TABLE 2.5 Flares Associated with Plage Regions We find that plages in the first, second and third rotations produced a total of 80 of the major flares almost equally divided. These 49 plage regions produced nearly 44% of all flares reported during 1957 (1795 of the 3831 reported). ## 4. Important Radio Emissions from the Sun During 1957 We have limited this portion of the catalogue to spectral observations Type II (slow drift) and Type IV (broad band continuum) and radio emissions at discrete frequencies between 167 Mc/s and 9400 Mc/s. During 1957 the Harvard Radio Astronomy Station, at Fort Davis, Texas, operated on a sweep frequency range from 100-580 Mc/s. The normal operating times were approximately 1345-2400 UT during the winter months and 1230-0145 UT during the summer (reference 38). During 1957 the spectral observations of the solar radio emissions with the Dapto radio spectrograph (CSIRO, Sydney, Australia) operated in the frequency range 40-210 Mc/s. The normal observing times were approximately 2300-0800 during the winter months and 2200-0700 in the summer. With only the Harvard and Sydney stations patrolling the sun, we have a period between 0800 and approximately 1400 during the winter months and 0700 and 1230 in the summer with no spectral observations. In order to fill this approximate six hour gap, we have included Type IV emissions derived from single frequency observations by a number of scientists for the complete 24 hour Greenwich day. We find a total of eleven Type IV emissions derived for the six-hour period and 41 for the normal observing times of the two sweep frequencies stations. During that same period Harvard (reference 38) and Sydney observed only 23 emissions of Type IV. A summary is shown in Table 2.6 where the distribution of the Type II and Type IV spectral emissions are given for the Greenwich day in three-hour intervals. | | 0-3 | 3-6 | 6-9 | 9-12 | 12-15 | 15-18 | 18-21 | 21-24 | Total | |-------------------------------|-----|-----|-----|------|------------|-------|-------|-------|-------| | Type II | 11 | 13 | 2 | 0 | 7 | 10 | 10 | 10 | 63 | | Type IV Har.& Syd. Type IV | 3 | 3 | 0 | 0 | 5 | 4 | 6 | 2 | 23 | | Derived | 8 | 3 | 9 | 6 | 10 | 6 | 6 | 4 | 52 | | All
Type IV | 11 | 6 | 9 | 6 | 1 5 | 10 | 12 | 6 | 75 | | Type IV Har.or Syd. & derived | 2 | 1 | 0 | 0 | 3 | 3 | 6 | 2 | 17 | | Normal Obs.
Time | | Syd | | | | H | ar | | | TABLE 2.6 Distribution of Type II and Type IV Spectral Emissions During the Greenwich Day The first row indicated as Type IV gives the number of Type IV emissions reported by the Harvard station and/or Sydney. The second row gives the number of Type IV's not observed on sweep frequency but derived from discrete frequency data; the third row gives the number of all Type IV's. The last row gives the number of Type IV's observed on sweep frequency and also derived from discrete frequency data. It is interesting to note that of the 52 cases of derived Type IV's 28 of them occurred when neither the Harvard nor the Sydney station was observing the sun. Eleven of these occurred in the normal non-observing time between approximately 0700 and 1300. A total of 63 Type II (slow drive) bursts were recorded at either Harvard or Sydney radio stations. Their distribution in the three-hour intervals is shown on the first line of Table 2.6. Data for the fixed-frequency observations have been obtained from the IAU Quarterly Bulletins of Solar Activity (reference 63) and the Tokyo Astronomical Observatory Bulletin (reference 68). The IAU Bulletin did not report the time of maximum flux until the start of the IGY, July 1957. The radio patrol of the sun was very incomplete during the first quarter of 1957, as shown on Figure 2.IV-1 and on Table 2.IV-i. Observations were made by ten observatories at a total of 15 frequencies, ranging from 9400 Mc/s to 81 Mc/s. With the exception of 200 Mc/s and 600 Mc/s, the sun was under observation only about 25% of the time at any given frequency. The patrol at 200 and 600 Mc/s covered approximately 58% of the Greenwich day. There was a slight improvement during the second quarter as shown on Table 2.IV-i. With the start of the IGY in July 1957 the number of solar radio observatories was increased to 24 observing at a total of 31 frequencies ranging from 9500 Mc/s to 67 Mc/s, with nearly complete coverage of the Greenwich day at several frequencies. This is shown on Fig.2.IV-2 for the fourth quarter. The coverage for the third quarter is essentially the same as the fourth quarter as shown in Table 2.IV-ii. #### 5. Geomagnetic Storm During 1957 A comprehensive search of the literature fails to reveal a universal list of geomagnetic storms or agreement on starting times. In the case of moderately severe and severe sudden commencement storms the variation of starting times reported by the magnetic observatories seldom differ by more than a few minutes; on the other hand, some observatories will report a storm duration of two or more days, while others may report two or more storms during the period. In the case of geomagnetic storms with a gradual beginning the start times may differ by several hours. The catalogue of geomagnetic storms has been limited to those storms that reached a planetary three-hour index Kp of 5 or greater. We have included, in some cases, a probable solar flare association. In each of these cases the storm-flare association has been given in the scientific literature as indicated in the reference or source column of the table. ### 6. Solar-Terrestrial Effects During 1957 This portion of the catalogue is limited to shortwave radio fadeouts (SWF) selected geomagnetic storms, solar flare effects (SFE), polar-cap absorptions, and Forbush decreases. #### 6.1 Short Wave Radio Fadeouts In the case of the SWF we have included those of importance 3 or greater that lasted for 30 minutes or more, and those that occurred at the time of a major flare, irrespective of their importance or duration. #### 6.2 Geomagnetic Storms In general, the geomagnetic storms listed in this portion of the catalogue are limited to those that have been classified as moderately severe ($K_p = 6$ or 7) and severe ($K_p = 8$ or 9). A few moderate storms ($K_p = 5$) have been included if in the literature they have been associated with a flare (irrespective of the flare importance) or a polar-cap absorption. #### 6.3 Solar Flare Effects Solar flare effects (SFE) (magnetic crochets) have been taken from reference 4. They are limited to those that were unmistakable or definitely SFE's. ### 6.4 Polar-Cap Absorptions A number of papers in the scientific literature have discussed polar-cap absorption and their correlation with solar flares, solar radio emissions, geomagnetic storm and other terrestrial effects. There is, in general, good agreement between the different investigators, although the choice of the
flare responsible for the PCA is, in some cases, not unique. These are cases when two or more flares of importance 2 or greater take place within the acceptable time limit. #### 6.5 Forbush Decreases The list of Forbush Decreases given in the catalogue is probably the most questionable of all of the data. A number of Japanese physicists have published lists of cosmic ray storms (Forbush decreases) that they have associated with geomagnetic storms (references 27, 33). These cosmic ray storms have been estimated from a number of high latitude neutron monitor stations, but starting times have not been given except for a tin hours from the start of the sudden commencement to the start of the main phase decrease. #### 7. Catalogue of Balloon Flights One hundred forty balloon flights were reported to the IGY World Data Center A for cosmic rays for the first six months of the IGY (second six months of 1957). Fifty-four of these flights were made in the USSR and 86 by free world scientists. Thirty-four of the USSR flights and 72 of the free world flights were made within four days after a major solar. In fact, there was at least one balloon flight at altitude, and in some cases several within four days after all but five (Flares No. 40, 77, 86, 90, and 91) of the major flares during the second six months of 1957. In several cases balloons were at altitude at the time of the major flare, or were launched within 24 hours after the start of the flare. A search of the literature reveals only two balloon flights within four days of a major flare (flares number 11, and 22) during the first six months of 1957. #### 8. Chronological Catalogue of Major Solar Events During 1957 This table summarized many of the data contained in Tables I through VI of the catalogue. However, Tables I through VI give many events and more detailed data than was possible in Table VIII. In Table VIII flares were limited to those of importance 3 or 3+ in the McMath-Hulbert working list (references 12 and unpublished data) and those of lower importance that were unquestionably associated with a flare effect. The criteria for inclusion as a major event (indicated by an asterisk) are as follow: - 8.1 Flares of importance 3 or 3+ in the McMath-Hulbert working list (reference 9). - 8.2 Short-wave fades of importance 3 or 3+ that lasted for 30 minutes or more. - 8.3 10 cm. radio emissions with a peak flux of 500 or more (units of $10-22 \text{ Wm}^{-2} (\text{c/s})-1$) - 8.4 <u>Plage regions</u> that were the sources of 30 or more flares (of all importances) during disk passage. - 8.5 Sunspot groups that had a mean area of 1000 millionth of the visible solar hemisphere, based on Mt. Wilson data, or had a γ or $\beta\gamma$ magnetic classification during disk passage. - 8.6 Dynamic spectral emissions includes outstanding Type I and Type III bursts reported in the IAU Bulletin, and all Type II and Type IV bursts included in the Maxwell, Hughes and Thompson Catalogue of Type II and Type IV Solar Radio Bursts (reference 38). - 8.7 Polar-cap absorptions included in Bailey's catalogue (reference 2) and those weak events generally reported in the literature from Riometer recordings. In addition to these major events, the catalogue includes: - $8.8 \quad 200 \text{ Mc/s radio emissions}$ that occurred at the time of other solar events. - 8.9 Radio emissions at other frequencies unquestionably associated with other solar events. - 8.10 Geomagnetic storms - 8.11 All events of lower importance that are definitely or reasonably associated with one or more of the major events. - 8.12 Notes and comments concerning some of the solar-terrestrial events are given as footnotes on the appropriate pages. TABLE 2.7 SOURCES AND REFERENCES SOLAR ACTIVITY CATALOGUE 1957 | | | | | | | 8 | SOLAR PHENOMENA | MENA | RA | RADIO EMISSIONS | NS | | SOLAR-7 | TERRESTE | SOLAR-TERRESTRIAL EFFECTS | CTS | | |--------------|----------------------------|---|-----------------|--------------|-------------------------------------|------------|-----------------|--------|----|-----------------|-----------------|-----------|----------|----------|---------------------------|-----------|-----------| | Ref.
No. | Author | Publication | Vol. | Year | Pages | Plage | Sun Spots | Flares | ı | 2 | Single
Freq. | S.W.F. | P.C.A. F | Forbush | Geomag.
Storms | Κp | S.F.E | | - | Afanas'yeva | Geomag. Aeronomy | 2 | 1962 | 426 - 431 | | | | | | | | | | 8 | | | | 61 | Bailey | Planet, Space Sci. | 12 | 1964 | 495 - 541 | | | - | | | | | ⊗ | | i | | | | ₆ | Bailey | J. Phys. Soc. Japan Supp. Al | 17 | 1962 | 106 - 112 | | | × | | | | × | ⊗ | | | | | | 4 | Bartels, Roman, & Veldkamp | IAGA Bulletin | 12.i | 1961 | 134 - 136
210 - 217
203 - 204 | | | | | | | | | | ⊗ | \otimes | \otimes | | vs . | Bartels & Veldkamp | J. Geophys, Res. | 63 | 1957
1958 | 475, 629
243, 547 | | | | | | | | | | $\otimes \otimes$ | × | × | | 9 | Bartels | IAGA Bulletin | 18 | 1962 | 107 - 112
178 - 179 | | | | | | | | | | ⊗ | \otimes | | | 7 | Besprozvannaya | J. Phys. Soc. Japan Supp. AI | 17 | 1962 | 146 - 149 | | | | | | | | ⊗ | | | | | | • | Boorman, et. al. | M.N. Royal Astron. Soc. | 123 | 1961 | 96 - 18 | | | × | × | | | | | | | | | | " | Collins, Jelly & Matthews | Can, J. Phys. | 39 | 1961 | 35 - 52 | | | | | | , | | ⊗ | | | | | | 9 | De Feiter, et. al. | Planet, Space Sci. | 2 | 1961 | 223 - 227 | <u>-</u> . | | * | | | | | | | ⊗ | × | | | = | Dodson & Hedeman | J. Geophys. Res. | 9 | 1960 | 123 - 131 | | | 8 | | | | | | | | | | | 12 | Dodson & Hedeman | I.G.Y. Solar Act Report | R 12 | 1960 | _ | | | ⊗ | | | | | | | | | - | | 13 | Dodson & Hedeman | Plage Catalogue | To be published | lished | | ⊗ | × | | | | - | | | | | | | | 14, | Dodson & Hedeman | Astrophys. J. | 128 | 1958 | 636 - 645 | | | × | | | | | | | | | ⊗ | | 15. | Dodson & Hedeman | Planet. Space Sci. | 21 | 1964 | 393 - 418 | | | × | × | × | | \otimes | | | × | | | | 16. | Dvoryashin, et. al. | Soviet Astron. A.J. | S | 1961 | 311 - 325 | | | × | | × | | | × | | \otimes | | | | 17. | Eleman | Arkiv Astronomi | က | 1962 | 37 - 49 | | | × | | | | | | | | | ⊗ | | 18. | Ellison, Ed. | Annals, I.G.Y. | 23 | 1962 | 266 pages | | ⊗ | | | | | | | | | | | | 19. | Ellison, Ed. | Annals, I.G.Y. | 21, 22 | 1961 | | 8 | ⊗ | 8 | | | | | | | | | | | 20. | Fedchenko | Geomag., Aeronomy | - | 1961 | 310 - 316 | | | | | | | | | ⊗ | | | | | 21. | Finch & Laurie | The Observatory | 82 | 1958 | 40 - 42 | _ | × | | | | | | | | ⊗ | | | | 22. | HaKura & Goh | J. Radio Res. Lab. Japan | 9 | 1959 | 633 - 650 | | | | | × | × | | × | | ⊗ | | | | 23. | Haurwitz | J. Geophys. Res. | 67 | 1962 | 2919 - 2982 | | | × | | | | | | | ⊗ | | | | 24. | Jelly & Collins | Can. J. Phys. | 0‡ | 1962 | 706 - 718 | | | | | | | | ⊗ | | | | | | 25. | Jenkins & Paghis | Can. J. Phys. | 1 | 1963 | 1056 - 1075 | | | × | | | | | 8 | | | | | | 26. | Kahle | U. Alaska Geophys. Report | R129 | 1962 | 68 pages | | | × | × | × | | × | ⊗ | | × | | | | 27. | Kamiya | J. Geomag, Geoel. Japan | 13 | 1961 | 33 - 41 | | | × | | ⊗ | | | | × | | | | | 28. | Knapp | J. Geophys. F.es. | 99 | 1961 | 2053 - 2085 | | | | | | | | | | ⊗ | | | | 29. | Khocholava | Geomag, Aeronomy | 8 | 1962 | 96 - 06 | × | | × | | × | | | * | × | × | | | | 30. | Khocholava | Geomag, Aeronomy | က | 1963 | 735 - 740 | × | | × | | × | | | ⊗ | × | × | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | NOS | SOLAR PHENOMENA | NA | RADIC | RADIO EMISSIONS | Ş | | SOLAR- | TERRESTR | SOLAR-TERRESTRIAL EFFECTS | T.S | | |-------------|--------------------------------|--|------------------|-----------------------------------|-------------|-------|-----------------|--------|-----------|-----------------|-----------------|----------|-----------|---------------------|---------------------------|--------------------|--------| | Ref.
No. | Author | Publication | Vol. | Year | Pages | Plage | Sun Spots | Flares | п | IV | Single
Freq. | S.W.F. P | P.C.A. F | Forbush
Decrease | Geomag.
Storms | Кp | S.F.E. | | - | 1 sinhach | ii Alaska Geonbys, Rep. | R127 | 1962 | 230 pages | | | | | | | | 8 | | | | | | 32. | Lockwood | J. Geophys. Res. | 65 | 1960 | 3859 - 3880 | | | × | | | | | | 8 | | | | | 33. | Maeda, et. al. | Ann. Geophys. | 18 | 1962 | 305 - 333 | | | × | | | × | × | | × | 8 | | - | | 34. | Malitson | NASA - TR | R169 | 1963 | 109 - 117 | | | × | | × | | | ⊗ | | × | | _ | | 35. | Matres & Pick | Ann. Astrophys. | 25 | 1962 | 293 - 300 | | × | 8 | | | | | | | | | | | 36. | Matsushita | J. Geophys. Res. | 29 | 1962 | 3753 - 3771 | | | | | | | | | | 8 | | | | 37. | Maxwell, Thompson. | Planet, Space Sci. | - | 1959 | - 325 - 332 | | | | \otimes | | | | | | × | | | | 38. | Maxwell, Hughes. &
Thompson | J. Geophys, Res. | 89 | 1963 | 1347 - 1354 | | | × | \otimes | ⊗ | | | | | | | | | 39. | McLean | Australian J. Phys. | 12 | 1959 | 404 - 417 | | | | | \otimes | | | | | | × | | | 40. | Noves | J. Phys. Soc. Japan, Supp. A2 | 17 | 1962 | 275 - 280 | × | × | × | | | | | ⊗ | | | | | | 4 | Obayashi & Hakura | J. Geophys. Res. | 65 | 1960 | 3143 - 3148 | | | × | | × | | | \otimes | | × | | | | - 42 | Obayashi & Hakura | Rep. Ionosphere, Space.
Res. Japan | 14 | 1960 | 1 - 40 | | | | | × | | | × | | ⊗ | | | | 43. | Ohman, Ed. | Ann. I.G.Y. | ß | 1958 | 249 - 300 | × | × | × | × | × | × | | | | | | | | 44. | Pick-Gutmann | Ann. Astrophys. | 24 | 1961 | 183 - 210 | | | | | ⊗ | × | | | | | | | | 45. | Piggott & Shapley | Antartic Res. Geophys. | 7 | 1962 | 111 - 126 | | | | | | | | ⊗ | | (| | | | 46. | Pisharoty & Srivastava | J. Geophys. Res. | 67 | 1962 | 2189 - 2192 | - | | | | | - | | | | ⊗ | | | | 47. | Reid & Leinbach | J. Geophys. Res. | 64 | 1959 | 1801 - 1805 | | | × | | | | | ⊗ | | (| | - | | 48. | Sano | J. Geomag, Geoel, Japan | 14 | 1962 | 1 - 15 |
 | | | | | | (| | ⊛ | | | | 49. | Sarabhai & Pai | J. Phys. Soc. Japan, Supp. A2 | 17 | 1962 | 286 - 289 | | | × (| | | | | ⊗ | | × (| (| | | 50. | Shapley & Lincoln
Compil. | Ann. L.G.Y. Solar Activity | 16 | 1962 | 1 - 127 | | | 8 | × | × | × | × _ | | × | ⊗ | $\hat{\mathbf{x}}$ | | | 51. | Simpson, Ed. | Ann. I.G.Y. Cosmic-Rays | 27, 28 | | | | | | | | | | | | (| | | | 52. | Sinno | J. Geomag. Geoel, Japan | 13 | 1961 | 1 - 10 | | | × | | × (| | | × | | ® | | | | 53. | Thompson & Maxwell | Planet Space Sci. | 2 | 1960 | 104 - 109 | | | × | | \otimes | | | × | | | | | | | Waldmeier | Pub. Eigeniss, Sternwarte
Zurich | 11 | 19 | 31 - 59 | | \otimes | | | | | | | | | | | | 55. | Warwick, C. | I.G.Y. Solar Activity Rep. | R 17 | 1962 | | | | 8 | | | | | (| | | | | | 56. | | J. Geophys. Res. | 67 | 1962 | 1312 - 1332 | | | × | (| | × | | \otimes | | | | | | 57. | Weiss | Australian J. Phys. | 16 | 1963 | 240 - 271 | | | × | ⊗ | | | | | | | | | | 58. | | Atomic Energy of Canada.
Deep River | Weekly
Neutro | Weekly Reports
Neutron Monitor | | | | | | | | | | × | 2.13 TABLE 2.7 1957 (CONTINUED) | П | ы | Γ | | | | | | | | | | | | |---------------------------|---------------------|--|-----------------------|---------------------------|-----------------------|------------------------|----------------------|-----------------|-----------------------------------|------------------------------|----------------------------|------------------------|--| | | S.F.E. | | | | | | | | | | | | | | ECTS | Κρ | 8 | | | | | | | | | | | | | SOLAR-TERRESTRIAL EFFECTS | Geomag.
Storms | ⊛ | | | × | | | | | | | | | | -TERREST | Forbush
Decrease | | | | | | | | | | | | | | SOLAR | P.C.A. | | | | | (| ⊛ | | | | | | | | | S.W.F. F | ⊗ | | | | | | | | | | | | | ONS | Single
Freq. | ® | | | - (| 8 | | | | | 8 | | | | RADIO EMISSIONS | £ | | 8 | | (| 8 | | | | | | | | | RA | 'H | | ⊗ | | (| ⊛ | | | | | | | | | ΑN | Flares | ⊗ | | | × | | | | | | 8 | | | | SOLAR PHENOMENA | Sun Spots | | | 8 | | | (| ⊛ | ⊗ ⊗ | ı | ⊗ | × | | | SOLAR | Plage S | 8 | | | | | | | | | ⊗ | | | | | Pages | | | C89 - C184 | | | | | 272, 360,
471, 580
116, 214 | 320, 480,
634
249 | | | | | | Year | | | 1961 | | | | 1957 | 1957 | | | 1957 | | | | | 150 - 161 | | | | 117 - 120 | . | ä | | | | 7 | | | | Vol. | 150 | | 56 | | 117 | 1, 2, 3 | | 69 02 | 63 62 | | | | | | Publication | Solar, Geophysical Data
Part B - 1957 | Spectral Observations | Photoheliographic Results | Weekly Solar Bulletin | Solar Activity | Aurora, Instrumental | Microfilm | P. Astron. Soc. Pacific | J. Geophys. Res. | Quarterly Solar Bulletin | Daily Sunspot Bulletin | | | H | | 15 A | · Ø | Д | 3 | | <u> </u> | 3 | <u>ρ</u> ί | - - | <u>•</u> | ă | | | | Author | CRPL | CSTRO | Greenwich Obs. | High Altitude Obs. | IAU Quarterly Bulletin | I.G.Y. WDC-A | Mt. Wilson Obs. | Mt. Wilson Sunspot
Mag. Class | Principal Magnetic
Storms | Tokyo Astronomical
Obs. | U.S. Naval Obs. | | | П | Ref.
No. | .98 | .09 | 61. | 62. | 63. | ž | 65. | .99 | 67. | 8 | 9 | | | | | | | | | | | | | | | | | #### TABLE I. CATALOGUE OF MAJOR SOLAR FLARES DURING 1957 The meaning of the various columns and a description of the data contained in Table I - Catalogue of Major Solar Flares, are given below. A major flare is defined as a flare which has been reported with importance 3 or 3+ by at least one solar observatory, or with importance 2+ by at least two observatories and published in the Quarterly Bulletin of the IAU (reference 63). - Column 1 Major Flare Serial Number. - Column 2 Solar Event Serial Number. This is the event number assigned to the solar or terrestrial event in the Chronological Catalogue, Table VIII. - Column 3 Greenwich Date of the Flare. - Column 4 Beginning of the Flare U.T. This is the earliest time reported in the IAU Bulletin. If the observatory reported that the start of the flare was observed, the fact is indicated by underlining the start time. - Column 5 End Time U.T. This is the latest reported end time in the IAU Bulletin. If the end of the flare was observed, the end time is underlined. - Column 6 Time of Maximum. Since different observatories often report different maximum times for the same flare, the time (or in a few cases, times) entered in this column has been taken from the McMath-Hulbert working list of flares for the second six months and unpublished data for the first six months. In general, the tabulated time is the arithmetic mean of the reported times of maximum for all observations that covered the principal maximum of the flare. If a second time is given, there is an indication that a secondary maximum may have occurred as indicated by two well developed phases or that several observers reported them as two separate flares. - Column 7 Position. The heliographic position given in the catalogue are arithmetic means of the values reported in the IAU Bulletin. A reported value is excluded in deriving the mean if the value deviates by a large amount from the other reported positions. - Column 8 Plage Number. This is the serial number of the McMath plage in which the flare occurred. - Column 9 Active Region. This is the serial number assigned to active regions by the Meudon Observatory in the IAU Quarterly Bulletin. The numbering starts with one at the beginning of each quarter. It will be noted that there is not always a one to one correspondence between the plage and the active region, a plage may cover two or more regions. - Column 10 Mt. Wilson Serial Number of Sunspot Group Where the Flare Occurred. Occasionally a flare occurs between two groups and two spot numbers are recorded. - Column 11 Greenwich Serial Number of the Spot Group. - Column 12 Flare Importance. This is the maximum importance reported for the flare in the IAU Quarterly Bulletin. - Column 13 No. Rep./No. Max. This column gives the number of observatories reporting the flare in the IAU Bulletin and the number that reported it with the maximum importance. Occasionally an observer reports the same flare two or more times. These separate reports are all considered in the selection of the start, end, and maximum times use in Columns 4, 5, and 6. But only once for the number of reports. The number of observers reporting the flare with the importance shown in Column 12 is indicated by the second number in this column. (See Note Page 2.I-iv.) - Column 14 This column gives the importance assigned to the flare in the McMath-Hulbert Observatory working list of flares (reference 12), for the second six months and unpublished data for the first six months. The method that was used to arrive at the value is described in that reference. #### FLARE AREA SQUARE DEGREES Reported areas of flares, in square degrees, frequently vary over a wide range. These differences are due to the methods used by the observer, different times at which the estimate, or measurement was made, and other factors. In order to give the tabulation of this parameter as much value as possible, we have given: - Column 15 The range of areas reported in the IAU Quarterly Bulletin: Smallest area and largest area. - Column 16 Number of Observatories Reporting an Area - Column 17 The Arithmetic Mean of the Reported Values #### RELATED FLARE ACTIVITY - Column 18 Other Flares. This column lists the number of minor and major flares associated with the active region during disk passage (IAU active region reference 63) before and after the major flare. - Column 19 This column gives the heliographic longitude (or cental meridian distance) of the first flare associated with the region and the importance of the first flare. For example: E90/2 indicates that the first flare occurred at E90, and at least one observatory reported it with an importance 2. - Column 20 Short Wave Radio Fadeouts (S.W.F.). Short wave radio fadeouts associated with major flares are listed with the following notation: Beginning/Duration in munutes/ importance. Complete data for S.W.F.'s of importance ≥3 that lasted 30 minutes or more are given in Table VI, Catalogue of Solar-Terrestrial Effects. - Column 21 Solar Radio Emissions at 10 cm. Peak flux reported at approximately 10 cm. wave length. (The frequencies may be 2800, 2980, or 3000 Mc/s.) Detailed data for important solar radio emissions are given in Table IV, Catalogue of Solar Radio Emissions. The information given in Columns 21-23 is limited to an indication of the radio activity of the region at the time of the flare. - Column 22 Peak flux reported at 1.5 m. wave length (200 Mc/s). If the peak flux was reported as greater than the recorded flux, the recorded flux has been underlined. When the flux given in Columns 20 or 21 represents a smoothed flux (peak flux not reported), the value is enclosed in a bracket. - Column 23 Emissions at Other Wave Lengths. The notation cm. in this column indicates that emissions are reported (and given in Table IV at one or more frequencies greater than 600 Mc/s (except approximately 3000 Mc/s). Similarly, the notation m. indicates that emissions are reported at frequencies less than 600 Mc/s (except 200 Mc/s) and detailed data are given in Table IV. - Column 24 Dynamic Spectral Emissions. The notation II or IV in this column indicates that emissions of Type II (slow drift), or broad band continuum, Type IV, are reported by either the Sweep Frequency Observatory at Sydney, Australia, or the Harvard College Radio Observatory at Fort Davis, Texas. If no spectral observations are reported, but a broad band continuum, Type IV, has been derived from discrete frequency observations by one or more of several investigators, the symbol has been enclosed in a bracke - (IV). (Detailed data are given in Table IV.) #### SOLAR TERRESTRIAL EFFECTS - Column 25 Polar-Cap Absorption. Polar-cap absorptions reported within a
reasonable time after a major flare (generally between one and seven hours) are listed. The data in this column are limited to: month/Greenwich day/beginning time U.T./absorption in db. Additional data, including references, are given in Table VI, Catalogue of Solar-Terrestrial Effects. - Column 26 Geomagnetic Storms. Geomagnetic storms with a maximum Kp >5- reported by three or more observatories within a reasonable time after the major flare (generally between twelve and seventy two hours). The data in this column are limited to: Month/Greenwich day/onset time, U.T./type/degree of activity/maximum reported Kp. Additional data, including: references, duration, number of reports, etc. are given in the Catalogue of Geomagnetic Storms, Table V, and the Catalogue of Solar-Terrestrial Effects, Table VI. #### NOTE: Normalized flare data for the period July 1955 through June 1957 have just become available (6 January 1964). The normalized flare importances combined with the previously published data for the IGY2 (July 1957 through December 1958) cover 48 of the 84 months of the 19th Solar Cycle when the sun was reasonably active and most of the major flares were reported. Since the method used by Warwick (described in detail in (2)) to arrive at a normalized flare importance is different from the method used to derive the McMath-Hulbert working list of flares (reference 12), we feel that both the McMath-Hulbert and the Warwick flare importances will be valuable in the study of flares and flare induced phenomena and have inserted the Warwick importances between Columns 13 and 14 in the Catalogue of Major Flares (Volume 2, Table I) for 1957. We find three cases where flares reported in the IAU Bulletin, and the McMath-Hulbert working list are recorded as two or more separate flares in the Warwick list as shown below: | | Major Flare | McM | CSW | Im | portanc | е | |-------|-------------|------------|------------------------------|------------------|---------|-----| | Date | Serial No. | Serial No. | Serial No. | CSW | McM | IAU | | 8-28 | 45 | 710 | 1360
1362
1363
1367 | 3
3
3 | 3 | 3+ | | 9-18 | 70 | 1068 | 2191
2192 | 2 -
3+ | 3+ | 3+ | | 11-24 | 93 | 1982 | 4180
4181 | 3 -
3 | 3 | 3+ | A comparison of the flare times and heliographic portions is shown on Page 2.I-vi. ⁽¹⁾ Warwick, Constance S., Normalized Solar Flare Data July 1955 through June 1957, IGY Solar Activity Report Series, No. 29, Nov. 1964. ⁽²⁾ Warwick, Constance S., National Bureau of Sciences List of IGY Flares with Normalized Values of Importance and Area, IGY Solar Activity Report Series, No. 17, May 1962. # MAJOR FLARE NO. 45 | | Table I | McMath | 1 | C. S. Warw | | | |----------|---------|---------------------|---------------------|----------------|----------------|----------------| | Ser. No. | 45 | 710 | 1360 | 1362 | 1363 | 1367 | | Beg. | 0810 | 0913 | 0810 | 0915
(0841) | 0847 | 1133
(1110) | | End | 1404 | 1404 | 0839 | 1059
(1115) | 1047 | 1331
(1345) | | Max. | 0955 | 0925
0955 | 0824 | 1002 | 0925 | 1123 | | Position | S31 | S31
E 3 3 | \$30
E 32 | S30
E33 | | S34
E32 | | | E33 | دوء ا | عرت ، | 200 | - - | -,- | # MAJOR FLARE NO. 70 | | Table I | МсМа | th | C. S. Wa | | |----------|------------|------------|--------------------|----------------|----------------------------| | Ser. No. | 70 | 10 | 68 | 2191 | 2192 | | Beg. | 1658 | 1722 | 1818 | 1722
(1658) | 1818 | | End | 2110 | 1818 | 2110 | 1843 | 2029 | | Max. | 1840 | 1740 | 1840 | 1702 | 1840 | | Position | N23
E08 | N23
E08 | N 20
E03 | N23
E09 | N 20
E 03 | # MAJOR FLARE NO. 93 | | Table I | McMa | th | C. S. Wa | | |----------|------------|-------------|------------|------------|------------| | Ser. No. | 93 | 198 | 2 | 4180 | 4181 | | Beg. | 0848 | <u>0848</u> | 1100 | 0848 | 0900 | | End | 1202 | 1100 | 1202 | 1108 | 1109 | | Max. | 0911 | 0911 | 1109 | 0911 | 0912 | | Position | S14
E37 | S14
E47 | S12
E55 | S14
E37 | S11
E38 | Table Ii (cont.) | CSW
Serial | | Beg. | End | Max. | | | | mportan | ıce | |----------------------|-----------------------|----------------------|-----------------------|--------------|---------------------------|-------------------|------------------|----------|--------------| | No. | Date | UT | UT | UT | Posi | tion | CSW | IAU | McM | | 2760
3175
3207 | 0ct.
5
18
19 | 1253
2357
1916 | 1256
2550*
2006 | 1925 | N 45
S22
S25 | W90
W03
W21 | 2+
2+
2+ | 2 | 2
0
1C | | 4132 | <u>Nov.</u> | 0055 | 0105 | * | \$2 5 | E90 | 2+ | | 0 | | 5131
5150 | Dec.
28
30 | <u>2229</u> | 2331
0126 | 2230
0106 | N25
N24 | W50
W59 | 3 -
3- | 2
2,1 | 2
1+ | ^{*} Not in CRPL-F or IAU # TABLE II CSW FLARES IMPORTANCE 2+ OR 3-NOT INCLUDED IN TABLE I | CSW
Serial | | Beg. | End | Max. | | | | Importan | ce. | |--|----------------------------------|--|--|--|--|--|--|---------------------------------------|---------------------| | No. | Date | UT | UT | UT | Posit: | ion | CSW | IAU | McM | | 3515
3516
3530
3538
3540
3549
3645
3663
3707
3732 | Jan. 5 6 7 7 20 22 24 27 | 0116
0157
0712
2025
0400
1830
1850
0454
1638
0830 | 0200
0240
0728
2115
0435
1840
2015
0619
1653
1100 | 0116
0157

2030
0407

1920
0459 | N17
S24
N26
S23
N20
N20
N14
N15
S28
N13 | W31
E61
W71
E38
W90
W65
E14
E05
W80
W70 | 2+
3-
2+
2+
2+
2+
3-
2+
3-
2+ | 2
2+
2,1+
2
2
2,2
2 | 1B
2
1B
1B | | 3747
3830
3899
3909 | Feb.
1
13
25
26 | 1525
0044
0937
0108 | 1740
0110
0954
0150 | 1618
0046
0945
0120 | N21
S24
S24
N33 | W32
E26
W80
E28 | 2+
2+
2+
2+ | 2 ,2+,1
2 | 1.B | | 4273
4290
4354
4381
4394
4411
4425 | Apr.
6
8
12
15
17 | 1144
0333
1850
1410
0338
2220
2025 | 1153
0340
2010
1430
0400
2255
2150 | 1145
0336
1916

0344
2245
2033 | N24
S23
S25
N25
S16
N27
N32 | W90
E50
W73
E90
E80
E69
E56 | 2+
2+
3
2+
2+
2+ | 1
2,2+,2
2
2,2
1+
2 | 1B | | 5004
5462
5512 | June
1
22
24 | 2329
1335
2040 | 2356
1445
2102 | 2344
1415
2050 | S25
S20
N07 | wկկ
E38
E73 | 2+
2+
2+ | 2-
1+
2- | | | 651 | <u>July</u>
28 | 1346 | 1458 | 1403 | S23 | w76 | 2+ | 2,2,
2,1+,1 | 2 | | 1349
1502 | Aug.
27
31 | 2347
2035 | 2405
 | 2352 | N24
N14 | W85
W10 | 2+
2+ | 2 | 2 | | 1701
2063
2209
2335 | Sept.
5
15
19
22 | 2116
0426
0400
2006 | 2200
0450
0500
2014 | 2125
0428
2008 | N08
N12
N24
N10,16 | E74
W53
W10
E59 | 3-
2+
2+
3- | 1,2
2 | 1
2
0
1+ | The times enclosed in brackets for the Warwick flares 1362, 1367, and 2191 are the first beginnings and last endings as recorded in that list. Comparing the flare importances in Columns IAU, CSW, and McM (Table I) we find that 21 of the major flares reduced to minor flare status (1, 1+, 2- or 2) in the Warwick list have a major flare status in the McMath-Hulbert working list, although some were reduced in importance (from 3+ to 3, or 3 to 2+). Six of the major flares that retained that status in the Warwick list were reduced to minor flares in the McMath-Hulbert working list. Forty-one of the major flares in Table I were reduced to minor flares in both the Warwick and the McMath-Hulbert lists. The Warwick list includes 36 flares with importance 2+, or 3- and one flare with importance 3. These are given in Table 1-i. We have included the CSW Serial Number; Date; Beginning, End, and Maximum Time; Position; CSW Importance; all importances reported in the IAU Quarterly Bulletin; Remarks. The notation IA or IB in the remarks column indicates that the flare is included in Table 1-B or 1-C. The symbol "O" indicates that the flare is not listed in the IAU Bulletin. TABLE I. CATALOGUE OF MAJOR SOLAR FLARES DURING 19 | Support Number | | . | | | A IOP T | T A DF | | | | SOLA | R REGION | | F | LARE IMP | ORTAI | NCE | FLAR | E ARE |
--|----|--------------|------|-------------|-------------|--------|-------------|-------------|------|------|----------|--------|-----|----------|------------|------|-------|-------| | Section Sect | | | | M | AJOR F | LARE | | | | SOLA | | Number | | | | | Bango | No. 1 | | 1 4 66 1009 1400 1102 121 130 170 1407 1102 130 121 1400 130 13 1 1 10000 13 1 1 1 10000 13 1 1 1 1 | | | | | | | Posit | tion | | | Mt. W. | | IAU | | | м м. | Range | NO. | | 10 | 1 | 4 | | 1038 | 1403 | 1128 | S 21 | E40 | 3813 | 11 | 12068 | 17814 | 3+ | 6/1 | 2+ | 3 | 26-32 | 5 | | | | 1 | | | | | | | 3808 | 4 | 12054 | 17803 | 3 | 5/2 | 1 | 2+ | 10-30 | 3 | | 14 | | | | | | 1339 | N17 | W71 | 3808 | 4 | 12054 | 17803 | 3- | 6/1 | 2+ | 2+ | 10-40 | 6 | | 10 | | 1 | | | | | | | 3820 | 15 | 12085 | 17829 | 3 | 1/1 | 3- | 1 | 16 | 1 | | 8 | - | | | | | | | | ļ | 15 | | 17829 | 3 | 10/2 | 2+ | 3 | 10-38 | 5 | | 22 2310 2356 2314 N17 V17 3823 19 12089 17833 3. 1/1 3. 3. 3. 24 0247 0342 0250 N16 V26 3823 19 12089 17833 3. 3/1 2. 2. 18-19 32 0320 0357 0356 822 W89 3823 19 12089 17833 3. 3/1 2. 2. 18-19 33 0358 0550 0458 N24 E05 3830 30 12114 17850 3. 1/1 3. 3. 16 11 17 31 0358 0550 0458 N24 E05 3830 30 12114 17850 3. 1/1 3. 3. 16 12 28 0305 0450 0450 N48 E05 3830 30 12114 17850 3. 1/1 3. 3. 16 13 26 28 0005 0450 0418 N18 W35 3863 31 12154 17884 3. 2/1 3. 3. 10-20 14 131 1414 1633 435 S16 E40 3888 72 12191 17911 2. 9/2 2. 2. 5-16 15 29 1025 1400 1115 S15 W40 3889 84 12216 17927 3. 5/1 2 2 1-12 16 Apr. | | , | | | | | | | | | | 17829 | 3 | 2/1 | 2- | 1 | 3-20 | 2 | | | | | | | | | | | l | | | 17833 | 3+ | 1/1 | 3- | 3+ | 32 | 1 | | 9 12 24 1225 1354 1241 N16 W31 3823 19 12069 17833 3 4/1 2+ 3 2-15 10 25 0520 0527 0526 822 W89 3820 15 12065 17829 3 1/1 3- 3 16 11 17 31 0356 050 0436 N24 E05 3830 30 12114 17850 3+ 1/1 3- 3+ 25 12 Feb. | | | | | | | | | | | | 17833 | 3 | 3/1 | 2+ | 2+ | 18-19 | 2 | | 10 | | | ! | | | | | | | | | 17833 | 3 | 4/1 | 2+ | 3 | 2-15 | 4 | | 11 | | 12 | | _ | | | | | l | | | | l | | 3- | 3 | 16 | 1 | | 12 | | | ļ. | _ | | | | | l | | | | 1 | | 3- | 3+ | 25 | 1 | | 12 | 11 | 17 | | <u>U338</u> | 0000 | 0430 | 1767 | 200 | 3330 | 30 | | 2,000 | " | -, - | - | | | | | 14 | 12 | | | 0832 | 0915 | 0836 | S 12 | E06 | 3843 | 37 | 12122 | 17860 | 3 | 1/1 | 2 + | 3 |] - | - | | 14 | 13 | 26 | 28 | 0005 | 0420 | 0014 | N18 | W35 | 3863 | 51 | 12154 | 17884 | 3 | 2/1 | 3 | 3 | 10-20 | 2 | | 14 | | | | | 1000 | 1400 | 610 | E40 | 2002 | 72 | 12101 | 17011 | 2.1 | 9/2 | 2- | 2+ | 5-16 | 5 | | 16 | | | | | | | | | | | | | | | | | 1-12 | : | | 16 | 15 | | 1 | 1025 | 1400 | 1115 | 212 | W4U | 2899 | 04 | 16610 | 11361 | | -, - | | _ | 1 | | | 18 | 16 | | | 1002 | 1012 | - | S 08 | w 90 | 3899 | 1 | 12216 | 17927 | 3 | 1/1 | 3- | 3 | - | • | | 18 | 17 | 40 | 03 | 0825 | 1026 | 0835 | S 14 | w 60 | 3907 | 5 | 12235 | 17935 | 3 | 4/2 | 3- | 3 | - | | | 19 50 11 1/22 1800 178 323 204 3823 204 12285 17976 3 10/2 2+ 3 3-20 | 18 | | 08 | 0616 | 0830 | 0622 | S 19 | W02 | 3916 | 18 | 12259 | 17956 | 3 | 6/1 | 2 | 2 | 6-15 | | | 20 54 16 1040 1300 1105 N30 E85 3941 34 12285 17976 3 10/2 2+ 3 3-20 | 19 | 50 | 11 | 1722 | 1850 | 1738 | S 23 | E04 | 3923 | 20 | | 17954 | 3 | 2/1 | 2+ | 2+ | 7 | | | 20 | | _, | | | 1000 | 1105 | \$10C | E05 | 9041 | 24 | | 17076 | ١, | 10/2 | 2⊥ | 3 | 3-20 | | | 21 55 17 1000 1112 1022 1047 S18 W18 3996 81 12368 18043 3 6/1 2 2 5-22 | | | l | | _ | | | | 1 | | | | l | | | | 1 | | | 22 | 21 | 55 | l l | 1006 | 1118 | 1022 | N29 | E76 | 3941 | 34 | 12283 | TIAIO | ' | 0/2 | <i>u</i> - | J | | | | 23 | 22 | | | 1040 | 1202 | 1047 | S18 | W18 | 3996 | 81 | 12368 | 18043 | 3 | 6/1 | 2 | 2 | 5-22 | | | 24 | 23 | | 15 | 0730 | 0840 | 0743 | S 18 | E62 | 4022 | 99 | 12407 | 18067 | 3- | 9/1 | 2 | 2 | 6-35 | | | 25 82 19 1609 1649 1613 N20 E45 4024 103 12415 18071 3 5/1 2- 2 7-20 | 24 | | 19 | 0609 | 0811 | 0640 | S 38 | E24 | 4021 | 100 | 12409 | 18068 | 3 | 7/1 | 1+ | 2 | 3-12 | | | 26 | 25 | 82 | 19 | 1609 | 1649 | 1613 | N20 | E45 | 4024 | 103 | 12415 | 18071 | 2. | + 4/2 | 2+ | 2 | 7-16 | 1 | | 27 | 26 | | 24 | 0724 | 0820 | 0739 | N25 | W27 | 4024 | 103 | 12415 | 18071 | 3 | 5/1 | 2- | 2 | 7-20 |) | | 28 | 27 | | 24 | 0838 | 0929 | 0850 | N22 | W14 | 4024 | 103 | 12417 | 18073 | 3 | 5/2 | 2+ | 2+ | 2-13 | 3 | | 29 | | | 28 | 0658 | 0950 | 0722 | N10 | E27 | 4039 | 107 | 12434 | 18084 | 3 | 9/1 | 2 | 2+ | 5-12 | 2 | | 30 | | | 30 | 0814 | 0915 | 0828 | S 28 | E60 | 4044 | 112 | 12449 | 18092 | 3 | 10/1 | 1+ | 2 | 5-14 | ı | | 31 | | | 1 | | _ | 1025 | NO9 | w03 | 4039 | 107 | 12434 | 18084 | 2 | + 12/6 | 2- | 2+ | 5-24 | | | 31 | | | July | | | | · | | 1 | | 10101 | 1000 | . | , 9/9 | 1 | 9. | 1,2 | | | 32 92 03 0712 0830 0743 N14 W40 4039 33 04 1134 1154 - N12 E39 4048 11 12456 18096 3 1/1 1 3 24 34 04 1154 1213 - S10 E43 3 1/1 1+ - 25 35 08 0521 0802 0538 N14 W41 4046 8 12451 18094 2+ 9/2 2- 2 3-14 36 21 0633 0750 0658 N30 E15 4065 30 12491 18121 2+ 10/3 1+ 2 3-14 37 103 21 1320 1442 1337 N29 E12 4065 30 12491 18121 3 7/1 2- 2 5-8 38 108 22 0953 1150 - N15 E51 4075 33 12503 18128 3 1/1 3- 3 53 39 22 1240 1505 1303 S23 E07 4070 31 12496 18122 3 9/1 1 2 2-15 40 109 24 1712 1801 1737 S24 W27 4070 31 12496 18122 3 4/2 2+ 3 15-2 | 31 | | l | | | | | | | | | | 1 | | | | 1 | 00 | | 33 | 32 | 92 | 03 | | | | | | | | 12434 | 18084 | 3 | T 17/4 | J- | 3+ | 3-10 | | | 34 04 1154 1213 - S10 E43 - - - - - 3 1/1 1+ - 25 35 08 0521 0802 0538 N14 W41 4046 8 12451 18094 2+ 9/2 2- 2 3-14 36 21 0633 0750 0658 N30 E15 4065 30 12491 18121 2+ 10/3 1+ 2 3-14 37 103 21 1320 1442 1337 N29 E12 4065 30 12491 18121 3 7/1 2- 2 5-8 38 108 22 0953 1150 - N15 E51 4075 33 12503 18128 3 1/1 3- 3 53 39 22 1240 1505 1303 523 E07 4070 31 12496 18122 3 4/2 2+ 3 15-2 40 109 | 33 | | 04 | | _ | | N12 | E39 | 4048 | 3 11 | 12456 | 18096 | 3 | 1/1 | 1 | 3 | 24 | | | 35 | | | 1 | | | | S 10 | E43 | 1 - | - | - | - | 3 | 1/1 | 1+ | - | 25 | | | 36 | ŀ | | 1 | | | | N14 | W41 | 4046 | 6 8 | 12451 | 18094 | 2 | + 9/2 | 2- | 2 | 3-1 | 4 | | 37 103 21 1320 1442 1337 N29 E12 4065 30 12491 18121 3 7/1 2- 2 5-8 38 108 22 0953 1150 - N15 E51 4075 33 12503 18128 3 1/1 3- 3 53 39 22 1240 1505 1303 S23 E07 4070 31 12496 18122 3 9/1 1 2 2-15 40 109 24 1712 1801 1737 S24 W27 4070 31 12496 18122 3 4/2 2+ 3 15-2 | | | 1 | | | | N30 | E15 | 406 | 5 30 | 12491 | 18121 | 2 | + 10/3 | 1+ | 2 | 3-1 | 4 | | 38 108 22 0953 1150 - N15 E51 4075 33 12503 18128 3 1/1 3- 3 53 39 22 1240 1505 1303 S23 E07 4070 31 12496 18122 3 9/1 1 2 2-15 40 109 24 1712 1801 1737 S24 W27 4070 31 12496 18122 3 4/2 2+ 3 15-2 | l | 103 | 1 | _ | | • | | | 406 | 5 30 | 12491 | 18121 |] 3 | 7/1 | 2- | 2 | 5-8 | | | 39 | | | l l | _ | | | | | 407 | 5 33 | 12503 | | 3 | 1/1 | 3- | 3 | 53 | | | 39 | ~ | 100 | | ,,,,, | | | | | | | | | | - /- | _ | _ | | ıs | | 40 109 24 1712 1801 1737 S24 W27 4070 31 1230 | 39 | | 22 | 1240 | 1505 | 1303 | S 23 | B E07 | 407 | 0 31 | | | 1 | | | | | | | | 40 | 109 | 24 | | | | | 4 W27 | 407 | 0 31 | 12496 | 18122 | 3 | 4/2 | 2+ | 3 | 15- | -23 | | 41 27 0637 0820 0703 S24 W61 4070 31 12496 18122 2+ 9/2 1+ 2 3-20 | ۸, | | | | | • | | 4 WE1 | 402 | O 21 | 12496 | 18122 | , | 9/2 | 1+ | 2 | 3-2 | 20 | # 57 WITH ASSOCIATED PHENOMENA AND SELECTED EFFECTS | 80 PEC | DEL . | E1 | E ACITY TOTAL | g w F | | RADIO EM | (ISSIONS | | POLAR CAP ABS. | GEOMAGNETIC STORM | |----------|-------------------|----------------|--------------------------|-------------------------|---------------|----------|-----------|---------|---------------------|------------------------------| | SQ. DEG. | | | E ACTIVITY | S.W.F. | Bash | Flux | Other | Dynamic | Gr. /Beg. / Abs. | Gr. / Beg./ Type/ Int./ Max. | | p. Mean | Minor/I
Before | Major
After | First Flare
Pos./Imp. | Beg./Dur./Imp. | 10 cm. | 1.5 m. | | П & IV | Day UT db | Day UT / Kp | | 28 | 6/0 | 13/0 | E81/1 | | - | - | m | | | | | 19 | 21/0 | 5/1 | E65/1 | | (160) | - | - | | i | | | 19 | 25/1 | 1/0 |
E65/1 | 1330/30/2 | (65) | - | m | | | | | 16 | 0/0 | 30/3 | E70/3 | | | - | - | | Jan. | Jan. | | 20 | 16/1 | 14/2 | E70/3 | 1113/13/1+ | 184 | - | m | | 20/1500/4.1 | 21/1255/sc/s/9- | | 12 | 23/2 | 7/1 | E70/3 | | - | - | cm | | 1 | | | 32 | 11/0 | 14/2 | E50/1 | | - | - | m | | | | | 19 | 11/1 | 14/1 | E50/1 | 0240/20/2 | - | - | cm | | | | | 8 | 13/2 | 12/0 | E50/1 | 1235/35/2 | 250 | 200 | m | | | | | 16 | 30/3 | 0/0 | E70/3 | 0528/20/1 | - | - | cm | | | | | 25 | 0/0 | 2/0 | E05/3+ | 0356/84/1 | 234 | - | cm | 11 | | | | | 0/0 | 1/0 | E06/3 | ł | - | 35 | m | | | | | 15 | 2/0 | 1/0 | E23/2- | 0020/110/1+ | - | 240 | m | II,IV | | | | 10 | 6/0 | 5/0 | E67/1+ | |] _ | _ | - | | | | | 7 | 23/0 | 6/1 | E73/1 | 1024/131/3 | (<u>84</u>) | - | m | | | | | | | | | | 1 | | | | ļ | | | - | 29/1 | 0/0 | E73/1 | | ļ - | - | cm,m | | April | | | - | 12/0 | 12/0 | E40/1 | 0833/35/2 | - | 10 | cm,m | (IV) | 03/1330/3.9 | | | 10 | 5/0 | 1/0 | E90/1 | 0612/48/2 | - | - | em | | | | | 7 | 25/0 | 3/0 | E90/1 | 1731/64/3 | (135) | - | m | | | Apr. | | 11 | 1/0 | 34/1 | l E90/2 | 1044/76/3 | 1670 | 800 | cm,m | (IV) | | 17/1136/sc/s/8- | | 10 | 2/1 | 33/0 | E90/2 | 1004/79/3 | - | - | cm | | | | | 11 | 16/0 | 13/0 | 0 E29/1+ | 1045/20/2+ | (250) | 250 | m | (IV) | | | | 15 | 3/0 | 3/ | | 0735/30/2 | 38 | - | cm | | | | | 8 | 29/0 | 25/ | | 0615/41/2- | \ _ | - | cm | | ļ | | | 10 | 5/0 | 27/ | | 1608/44/3 | (2325) | 260 | m | II,(IV |) | | | 11 | 17/1 | 13/ | | | | - | - | | 1 | | | 8 | 17/2 | 13/ | | 0849/28/3- | _ | 400 | , | (IV) | ļ | | | 9 | 17/0 | 25/ | | 0708/20/2- | - | 1500 | cm, | m (IV) | 1 | June
30/0528/s c/s/8+ | | 8 | 7/0 | 15/ | | | - | - | - | | 1 | To be | | 12 | 24/1 | 18/ | | 1 | 119 | - | m | (IV) | | July
02/0857/sc/s/80 | | | | | | | | | | | | | | 13 | 35/2 | 7/1 | | 0709/17/1 | | - | cm
cm, | m (IV) | July
03/1000/9.2 | 04/2342/sc/ms/7+ | | 31 | 42/3 | 0/0 |) E75/1 | 0729/61/2+
0830/44/3 | 585
600 | 3400 | em, | (17) | 03/1000/8.2 | 01/ 2012/ 00/ His/ 11 | | 24 | 6/0 | 10/ | /0 E88/1 | | 1 - | 200 | - | | | | | 25 | | | | | - | - | - | | | | | 8 | 20/0 | 7/0 | E74/1 | 0536/24/1+ | 359 | - | em, | ,m | | | | 8 | 18/0 | 17, | /1 E85/1- | 0547/60/3 | 536 | - | c m | | | | | 7 | 19/1 | 16, | /0 E85/1- | 1335/45/2 | (850) | 300 | m | (IV) | | | | 53 | 9/0 | 15, | /0 E85/2 | | - | 250 | m | | - | | | 8 | 8/0 | 18 | /2 E58/1 | 1 | . | 340 | m | | | | | 19 | 1 | 8/ | | 1727/113/ | | 200 | cm | ,m IV | 24/2015/2 | | | _ | 22.12 | <i>ر</i> م ر | O 5550/4 | 1759/81/3 | - | 180 | m | | | | | 8 | 20/2 | 6/ | 0 E58/1 | | 1 | 100 | ••• | | | | | | | | | | | | | | | | 2.1-/ | | | | | 3.4 | AIOP 1 | TI ADD | | | | | | | | | | | | | |--|--------|-------|----|--------------|--------|--------|------|-------------|------|----|-------|-------------|-----|----------|-------|-------------------|-------|----------| | | Sorial | P : | | | | | | | + | | | | | FLARE IM | PORTA | NCE | FLARI | E AREA | | | | | | | | | Pos | ition | | | | Green- | IAU | | | м ^с м. | Range | No. F | | | 42 | | | 1116 | 1257 | 1134 | N27 | W57 | 4083 | 45 | 12516 | 18141 | 2+ | 11/4 | 2- | 2+ | 4-17 | 9 | | | 43 | | 21 | <u>0745</u> | 0844 | 0756 | N24 | E20 | 4112 | 66 | 12563 | 18171 | 3 | 8/2 | 1+ | 2+ | 3-12 | 7 | | Accordance | 44 | | 23 | 1126 | 1300 | 1154 | N16 | W17 | 4112 | 66 | 12563 | 18171 | 3 | 7/1 | 2- | 2 | 6-18 | 5 | | 14 | 45 | 125 | 28 | 0810 | 1404 | 0955 | S 31 | E33 | 4125 | 73 | 12579 | 18181 | 3+ | 11/2 | 3 | 3 | 4-52 | 8 | | 14 | 46 | 126 | 28 | 2010 | 2048 | 2024 | S 28 | E30 | 4125 | 73 | 12579 | 18181 | 3 | 4/1 | 2+ | 2+ | 2-11 | 2 | | 1 | 47 | | 29 | 0545 | 0715 | 0555 | N24 | E35 | 4124 | 74 | 12580 | 18182 | 2+ | 8/2 | | 2 | 2-10 | 7 | | | 48 | | 29 | 1031 | 1201 | 1052 | S 25 | E20 | 4125 | 73 | 12579 | 18181 | 3 | 11/1 | 2- | 2 | 3-9 | 7 | | | 49 | | 30 | 0620 | 0804 | 0600 | N26 | E22 | 4124 | 74 | 12580 | 18182 | 2+ | 9/2 | 1+ | 2 | 2-22 | 7 | | 1 | 50 | | 31 | 0521 | 1048 | 0727 | S 32 | W02 | 4125 | 73 | 12579 | 18181 | 3 | 10/1 | | | 5-21 | 10 | | Secondary | 51 | 132 | 31 | 1257 | 1557 | 1312 | N25 | W02 | 4124 | 74 | 12580 | 18182 | 3+ | | | | 7-13 | 6 | | Signature Sign | 52 | | 31 | 1338 | 1455 | 1353 | N12 | W02 | ı | | | | | | | | | 4 | | 1 | 59 | 195 | | 0046 | 1020 | 0052 | N/12 | woo | | | | | | | | | | | | | | 100 | İ | | | | | | | | | · | | | | | | 3 | | Section Sect | | | | | | | | | 1 | | | | | | 2- | | i | | | 57 | | 1201- | | _ | | | | | 1 | | | | | | | | | 6 | | 68 142 03 1412 1727 1429 N23 W30 4124 74 12580 18182 3 13/6 3 3 7-20 8 59 06 0751 0900 0803 N23 w66 4124 74 12580 18182 3 11/1 2 2 6-45 8 60 09 0755 0855 0813 N12 E22 4134 80 12596 18194 3 1/1 2 2 4-17 6 61 146 10 0702 1030 0833 317 E16 4141 81 12506 18194 3 1/1 1 2 2-9 10 63 148 11 0236 0720 0833 317 E16 4141 81 12506 18194 3 1/1 1 2 2-11 6 63 152 12 0703 0740< | | 138D | 02 | 1313 | 1030 | 1310 | 534 | WJb | 4125 | 73 | 12579 | 18181 | 3 | 4/1 | 1+ | 2+ | 6-16 | 4 | | | | | 03 | 0647 | 1127 | 0850 | N15 | W38 | 4124 | 75 | 12581 | 18183 | 3 | 6/1 | 2- | 2 | 2-10 | 5 | | 60 09 0755 0855 0813 N12 E22 4134 80 12596 18194 3 9/1 2- 2 4-17 6 61 146 10 0222 0300 0250 N14 E16 4134 80 12596 18194 3 1/1 2+ 3 12 1 62 10 0702 1030 0833 S17 E16 4141 81 12606 18197 3 12/1 1 2 2-9 10 63 148 11 0236 0722 0300 N13 W02 4134 80 12596 18194 3 5/2 3- 3 7-23 3 64 150 12 0703 0740 0713 N09 W15 4134 80 12596 18194 3 7/1 1+ 2 2-11 6 65 152 12 1510 1638 1516 N11 W18 4134 80 12596 18194 3 7/1 1+ 2 2-11 6 66 16 16 1451 1709 1459 N08 E48 4152 93 12623 18211 2+ 9/3 2 2+ 6-10 6 67 17 0416 0945 0867 N23 E28 4151 91 12622 18209 2+ 8/2 1+ 2+ 4-19 5 68 18 0624 0702 0633 N23 E13 4151 91 12622 18209 2+ 6/2 2- 2 11-22 4 69 160 18 1626 1613 1325 N23 E10 4151 91 12622 18209 3 12/3 2- 3 3-3 3 11.3 70 161 18 1658 2110 1240 N23 E08 4151 91 12622 18209 3 12/3 2- 3 3-3 3 11.3 71 162 19 0350 0555 0410 N23 E02 4151 91 12622 18209 3 16/4 2-,3 3+ 11.3 10 71 162 19 0350 0555 0410 N23 E02 4151 91 12622 18209 3 16/4 2-,3 3+ 11.3 10 72 17 188 21 1330 1510 1335 N10 W06 4152 94 12634 18216 3 10/1 1 1 1 4-20 7 74 188 21 1330 1510 1335 N10 W06 4152 94 12636 18223 3 5/3 3-3 3 12.14 2 77 179 000 040 0500 0355 S38 W14 4173 21 12669 18247 3 3/1 2- 2 5 5-22 2 78 181 13 0334 0641 039 N12 E40 4168 34 12689 18262 3 1/1 3 3 3 15 1 1 80 160 041 0413 0500 0425 S26 E20 4189 38 12689 18262 3 1/1 3 3 1+ 11-10 6 81 181 043 0500 0425 S26 E20 4189 38 12689 18262 3 1/1 3 3 1+ 11-10 6 82 190 020 1637 1804 1642 S26 W45 4189 38 12689 18262 3 3/1 1 1 1 1 4-10 3 84 181 13 0334 0641 0339 N12 E40 4188 38 12689 18262 3 3/1 1 1 1 1 1 4-10 3 84 181 13 0334 0641 0339 N12 E40 4188 38 12689 18262 3 3/1 1 1 1 1 1 1 4-10 6 82 190 020 1637 1804 1642 S26 W45 4189 38 12689 18262 3 3/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 58 | 142 | 03 | 1412 | 1727 | 1429 | N23 | W30 | 4124 | 74 | 12580 | 18182 | 3 | 13/6 | 3- | 3 | 7-20 | 8 | | 61 | 59 | | 06 | 0751 | 0900 | 0803 | N23 | W66 | 4124 | 74 | 12580 | 18182 | 3 | 11/1 | 2 | 2 | 6-45 | 8 | | 10 0 0702 1030 0833 S17 E16 4141 81 12606 18197 3 12/1 1 2 2-9 10 | 60 | | 09 | 0755 | 0855 | 0813 | N12 | E22 | 4134 | 80 | 12596 | 18194 | 3 | 9/1 | 2- | 2 | 4-17 | 6 | | 148 | 61 | 146 | 10 | 0223 | 0300 | 0250 | N14 | E16 | 4134 | 80 | 12596 | 18194 | 3 | 1/1 | 2+ | 3 | 12 | 1 | | 64 150 12 0703 0740 0713 NO9 W15 4134 80 12596 18194 3 7/1 1+ 2 2-11 6 65 152 12 1510 1638 1516 N11 W18 4134 80 12596 18194 3 8/1 2- 2 3-8 6 66 16 1451 1709 1459 NO8 E48 4152 93 12623 18211 2+ 9/3 2 2+ 6-10 6 67 17 0416 0445 0807 N23 E28 4151 91 12622 18209 2+ 8/2 1+ 2+ 4-19 5 68 18 0624 0720 0633 N23 E13 4151 91 12622 18209 2+ 8/2 1+ 2+ 4-19 5 68 18 0624 0720 0633 N23 E13 4151 91 12622 18209 3+ 6/4 2- 3 3-133 10 10 161 18 1626 1613 1325 N23 E10 4151 91 12622 18209 3+ 6/4 2- 3+ 3+ 11-33 4 4 168 1636 1610 18 1658 2110 1420 N23 E03 4151 91 12622 18209 3+ 6/4 2- 3+ 3+ 11-33 4 4 168 1636 162 19 0350 0555 0410 N23 E03 4151 91 12622 18209 3+ 6/4 2- 3+ 3+ 11-33 4 4
168 1636 162 19 0350 0555 0410 N23 E03 4151 91 12622 18209 3+ 6/4 2- 3+ 3+ 11-33 4 4 168 1636 1636 16323 1636 16323 1636 16323 1636 16323 1636 16323 1636 16323 1636 16323 1636 16323 1636 1636 16323 1636 16333 1633 1633 1636 16333 1636 16333 1636 16333 | 62 | | 10 | 0702 | 1030 | 0833 | S 17 | E16 | 4141 | 81 | 12606 | 18197 | 3 | 12/1 | 1 | 2 | 2-9 | 10 | | 152 122 1510 1638 1516 N11 W18 4134 80 12596 18194 3 8/1 2 2 3 3 6 6 6 16 1451 1709 1459 N08 E48 4152 93 12623 18211 2 9/3 2 2 6 6 6 6 17 0416 0945 0807 N23 E28 4151 91 12622 18209 2 8/2 1 2 4 4 19 5 5 6 6 18 0624 0720 0633 N23 E13 4151 91 12622 18209 2 8/2 1 2 2 2 1 2 2 4 4 19 5 6 6 6 6 6 6 6 6 6 | 63 | 148 | 11 | 0236 | 0722 | 0300 | N13 | W02 | 4134 | 80 | 12596 | 18194 | 3 | 5/2 | 3- | 3 | 7-23 | 3 | | 66 | 64 | 150 | 12 | 0703 | 0740 | 0713 | N09 | W15 | 4134 | 80 | 12596 | 18194 | 3 | 7/1 | 1+ | 2 | 2-11 | 6 | | 67 | 65 | 152 | 12 | 1510 | 1638 | 1516 | N11 | W18 | 4134 | 80 | 12596 | 18194 | 3 | 8/1 | 2- | 2 | 3-8 | 6 | | 68 | 66 | | 16 | 1451 | 1709 | 1459 | N08 | E48 | 4152 | 93 | 12623 | 18211 | 2+ | 9/3 | 2 | 2+ | 6-10 | 6 | | 69 160 18 1026 1613 1325 N23 E10 4151 91 12622 18209 3 12/3 2- 3 3-13 10 70 161 18 1658 2110 1840 N23 E08 4151 91 12622 18209 3+ 6/4 2-,3+ 3+ 11-33 4 71 162 19 0350 0555 0410 N23 E02 4151 91 12622 18209 3+ 5/1 3; 3 7-52 5 72 19 0744 1200 0800 N23 E01 4151 91 12622 18209 2+ 12/2 2- 2 3-16 10 73 21 0518 1325 0614 N09 W01 4152 94 12634 18216 3 10/1 1 1 4-20 7 74 168 21 1330 1510 1335 N10 W06 4152 94 12634 18216 3 11/3 2 3 2-20 8 75 173 26 1907 2345 1952 N22 E15 4159 98 12636 18223 3 6/4 2- 3 19-24 3 76 176 30 1657 1750 1706 N25 W37 4159 98 12636 18223 3 5/3 3- 3 12-14 2 77 179 09 0340 0500 0355 S38 W14 4173 21 12669 18247 3 3/1 2- 2 5-22 2 78 181 13 0534 0641 0539 N12 E40 4186 34 12687 18260 2+ 3/2 2+ 2+ 6-23 3 79 185 16 0152 0202 0152 S25 E21 4189 38 12689 18262 3 1/1 3 3 3 15 1 80 16 0413 0500 0425 S26 E20 4189 38 12689 18262 3 1/1 3 3 3 1 1+ 11-20 6 82 190 20 1637 1804 1642 S26 W45 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3 84 23 0621 0645 - S27 W77 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3 84 23 0621 0645 - S27 W77 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3 | 67 | | 17 | 0416 | 0945 | 0807 | N23 | E28 | 4151 | 91 | 12622 | 18209 | 2+ | 8/2 | 1+ | 2+ | 4-19 | 5 | | 70 | 68 | | 18 | 0624 | 0720 | 0633 | N23 | E13 | 4151 | 91 | 12622 | 18209 | 2+ | 6/2 | 2- | 2 | 1-22 | 4 | | 71 | 69 | 160 | 18 | 1026 | 1613 | 1325 | N23 | E10 | 4151 | 91 | 12622 | 18209 | 3 | 12/3 | 2- | 3 | 3-13 | 10 | | 72 19 0744 1200 0800 N23 E01 4151 91 12622 18209 2+ 12/2 2- 2 3-16 10 73 21 0518 1325 0614 N09 W01 4152 94 12634 18216 3 10/1 1 1 4-20 7 74 168 21 1330 1510 1335 N10 W06 4152 94 12634 18216 3 10/1 1 1 4-20 7 75 173 26 1907 2345 1952 N22 E15 4159 98 12636 18223 3 5/4 3-3 12-14 2 76 176 30 1657 1750 1706 N25 W37 4159 98 12636 18223 3 5/3 3-3 12-14 2 77 179 09 0340 0500 0355 | 70 | 161 | 18 | 1658 | 2110 | 1840 | N23 | E08 | 4151 | 91 | 12622 | 18209 | 3+ | 6/4 | 2-,3+ | 3+ | 11-33 | 4 | | 73 | 71 | 162 | 19 | 0350 | 0555 | 0410 | N23 | E02 | 4151 | 91 | 12622 | 18209 | 3+ | 5/1 | | 3 | 7-52 | 5 | | 74 168 21 1330 1510 1335 N10 W06 4152 94 12634 18216 3 11/3 2 3 2-20 8 75 173 26 1907 2345 1952 N22 E15 4159 98 12636 18223 3 6/4 3-3 19-24 3 76 176 30 1657 1750 1706 N25 W37 4159 98 12636 18223 3 5/3 3-3 12-14 2 77 179 09 0340 0500 0355 S38 W14 4173 21 12669 18247 3 3/1 2-2 5-22 2 78 181 13 0534 0641 0539 N12 E40 4186 34 12687 18260 2+ 3/2 2+ 2+ 6-23 3 79 185 16 0152 0202 0152 S25 E21 4189 38 12689 18262 3 4/1 | 72 | | 19 | 0744 | 1200 | 0800 | N23 | E01 | 4151 | 91 | 12622 | 18209 | 2+ | 12/2 | 2- | 2 | 3-16 | 10 | | 75 | 73 | | 21 | 0518 | 1325 | 0614 | N09 | W01 | 4152 | 94 | 12634 | 18216 | 3 | 10/1 | 1 | 1 | 4-20 | 7 | | 76 | 74 | 168 | 21 | 1330 | 1510 | 1335 | N10 | W 06 | 4152 | 94 | 12634 | 18216 | 3 | 11/3 | 2 | 3 | 2-20 | 8 | | 76 176 30 1657 1750 1706 N25 W37 4159 98 12636 18223 3 5/3 3-3 12-14 2 77 179 09 0340 0500 0355 S38 W14 4173 21 12669 18247 3 3/1 2- 2 5-22 2 78 181 13 0534 0641 0539 N12 E40 4186 34 12687 18260 2+ 3/2 2+ 2+ 6-23 3 79 185 16 0152 0202 0152 S25 E21 4189 38 12689 18262 3 1/1 3 3 15 1 80 16 0413 0500 0425 S26 E20 4189 38 12689 18262 3 4/1 2- 2 3-32 4 81 19 0603 0920 0639 S24 W25 4189 38 12689 18262 3 8/2 | 75 | 173 | 26 | 1907 | 2345 | 1952 | N22 | E15 | 4159 | 98 | 12636 | 18223 | 3 | 6/4 | 3- | 3 | 19-24 | 3 | | 77 | 76 | 176 | 30 | | | 1706 | N25 | w 37 | | 98 | | - 1 | | | | | | 2 | | 78 181 13 0534 0641 0539 N12 E40 4186 34 12687 18260 2+ 3/2 2+ 2+ 2+ 6-23 3 79 185 16 0152 0202 0152 S25 E21 4189 38 12689 18262 3 1/1 3 3 15 1 80 16 0413 0500 0425 S26 E20 4189 38 12689 18262 3 4/1 2- 2 3-32 4 81 19 0603 0920 0639 S24 W25 4189 38 12689 18262 3 8/2 2- 2+ 11-20 6 82 190 20 1637 1804 1642 S26 W45 4189 38 12689 18262 3+ 2/1 3+ 3+ 20-40 2 83 21 1212 1314 1218 S25 W52 4189 38 12689 18262 3 | 77 | 179 | | <u>0</u> 340 | 0500 | 0355 | S38 | W14 | 4173 | 21 | 12669 | 18247 | 3 | 3/1 | 2- | 2 | 5-22 | 2. | | 79 | 78 | 181 | | | | | | | | | | - 1 | | | | | | | | 80 | 79 | 185 | | | | | | | | | | | | | | | | | | 81 19 0603 0920 0639 S 24 W 25 4189 38 12689 18262 3 8/2 2- 2+ 11-20 6
82 190 20 1637 1804 1642 S 26 W 45 4189 38 12689 18262 3+ 2/1 3+ 3+ 20-40 2
83 21 1212 1314 1218 S 25 W 52 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3
84 23 0621 0645 - S 27 W 77 4189 38 12689 18262 3 2/1 3 1+ 11-13 2 | 80 | | | | | | | | | | | | | | | | | | | 82 190 20 1637 1804 1642 S26 W45 4189 38 12689 18262 3+ 2/1 3+ 3+ 20-40 2
83 21 1212 1314 1218 S25 W52 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3
84 23 0621 0645 - S27 W77 4189 38 12689 18262 3 2/1 3 1+ 11-13 2 | 81 | | | _ | | | | | | | | | | | | | | | | 83 21 1212 1314 1218 S 25 W 52 4189 38 12689 18262 3 3/1 1+ 1+ 4-19 3
84 23 0621 0645 - S 27 W 77 4189 38 12689 18262 3 2/1 3 1+ 11-13 2 | 82 | 190 | 20 | 1637 | 1804 | 1642 | S 26 | W45 | | 38 | 12689 | 1 | | | | | | | | 84 23 0621 0645 - S27 W77 4189 38 12689 18262 3 2/1 3 1+ 11-13 2 | 83 | | 21 | | | | | | | | | 1 | | | | | | | | 0 2/1 0 17 11-13 2 | 84 | ŀ | 23 | | _ | | | W77 | | | | | | | | J | <u> </u> | # (CONTINUED) | SQ. | DEG. | RELATE
Minor/ | | E ACTIVITY | S.W.F. | | RADIO EMI | | | POLAR CAP ABS. | GEOMAGNETIC STORM | |-----|------|------------------|-------------|-----------------------|----------------|---------------|------------------|---------------|-----------------|-------------------|------------------------------------| | p. | Mean | Before | | First Flare Pos./Imp. | Beg./Dur./Imp. | Pea
10 cm. | k Flux
1.5 m. | Other
Wave | Dynamic | Gr. / Beg. / Abs. | Gr. /Beg./Type/Int./Max | | | | L | | | | | | Lengths | II & IV | Day/ UT/ db | Day./UT/ / Kp | | | 8 | 31/0 | 6/0 | E86/2- | 1110/61/0 | _ | 250 | cm m | | Aug. | | | | 8 | 16/0 | | | 1119/51/2 | | 350
150 | cm,m | | 09/1600/3.1 | | | | | | 23/1 | E73/1 | | - | 150 | m | | | | | | 11 | 23/1 | 16/0 | E73/1 | | -
 | - | em | | | | | | 19 | 17/0 | 32/5 | E87/1 | 0917/138/3 | 1192 | - | cm | (IV) | | Aug. | | | 7 | 18/1 | 31/4 | E87/1 | 2020/18/2+ | (760) | 450 | m | п | 29/0000/3.2 | 29/1920/sc/ms/7- | | | 6 | 13/0 | 32/4 | E90/1 | 0542/48/3- | 362 | • | cm | | | | | | 5 | 21/2 | 28/3 | E87/1 | 1039/16/1+ | - , | 550 | cm,m | | 29/1300/9 | 31/1812/s c/ms/7o | | | 8 | 20/1 | 25/3 | E90/1 | 0620/40/2 | - | - | cm,m | | | | | | 11 | 34/3 | 15/2 | E87/1 | | 569 | 1600 | cm,m | (IV) | | Sept. | | | 10 | 26/2 | 19/2 | E90/1 | 1303/184/3+ | (3900) | 1200 | cm,m | IV | 31/1500/5 | 02/0314/sc/s/9- | | | 4 | 13/0 | 38/3 | E90/1+ | | - | 1600 | m | | | | | | 7 | 20/1 | 31/2 | E90/1+ | 0950/40/2 | 605 | 2000 | om m | | | | | | 6 | 21/2 | 30/1 | | 0030/40/2 | | | cm,m | | | | | | 8 | 39/4 | 10/1 | E90/1+
E87/1 | | (204) | - | m
 | | Sept. | 04/1300/en/ :- | | | 10 | | | | | - | - | m | () | 2/1700/7.2 | 04/1300/sc/s/9. | | | 10 | 40/5 | 9/0 | E87/1 | | - | 1200 | em,m | (IV) | | 03/1233/-/s/9- | | | 6 | 33/3 | 18/0 | E90/1+ | | 341 | 140 | cm | | | | | | 14 | 36/3 | 9/1 | E90/1 | 1420/103/3 | (1350) | 320 | em,m | (IV) | | | | | 16 | 42/4 | 3/0 | E90/1 | 0800/60/2- | 430 | - | cm | | | | | | 10 | 18/0 | 17/4 | E87/1 | | 270 | _ | cm | | | | | | | | | | | | | | | | | | | 12 | 18/1 | 17/3 | E87/1 | | 349 | - | cm | | | | | | 6 | 0/0 | 40/0 | E18/3 | | - ' | 253 | cm,r | | | | | | 17 | 20/2 | 15/2 | E87/1 | 0244/100/3 | - | 520 | cm,m | īv | | 12/2154/sc/s/9- | | | 7 | 22/3 | 13/1 | E87/1 | 0702/32/3- | 443 | 1880 | | | 10/1000/1 5 | 13/0046/sc/s/9- | | | 6 | 23/4 | 12/0 | E87/1 | 1513/39/2+ | ŀ | | cm,m | Π | 12/1200/1.5 | | | | 8 | 16/0 | 26/0 | E73/2 | | (850) | 1050 | cm,m | II,IV | | | | | 9 | 17/0 | 52/5 | E13/2
E90/? | 1458/22/1+ | 320 | 300 | cm,m | | | | | | 8 | 27/1 | 42/4 | E90/? | 0411/49/2+ | 427 | 390 | cm | | | | | | 9 | | | | 0630/20/1+ | • | 118 | em | | | | | | 25 | 30/2 | 39/3 | E90/? | 1030/104/3 | - | 500 | m | _ | | | | | ı | 30/3 | 39/2 | E90/? | 1730/43/3+ | (275) | 356 | m | IV | | 21/1005/sc/ms/7+ | | | 22 | 34/4 | 35/1 | E90/? | 0359/54/3 | 1410 | 1420 | cm | IV | | | | | 10 | 35/5 | 34/0 | E90/? | 0800/35/2 | - | - | m | | | | | | 8 | 0/0 | 10/1 | W02/3 | | | - | cm | | | | | | 9 | 10/1 | 0/0 | W02/3 | 1330/60/3- | (785) | 1800 | cm,m | IV | 21/1700/5.1 | 22/1344/sc/s/9-
23/0235/sc/s/9- | | | 23 | 4/0 | 10/1 | E90/1 | 1925/100/2+ | _ | 384 | m | īv | 26/2315/2 | 29/0016/sc/s/9- | | | 13 | 9/1 | 5/0 | E90/1 | 1700/40/3 |
(120) | - | | 17 | 40/4313/4 | 29/0010/80/8/9- | | | | -, - | J, U | 200/1 | 55, 10, 5 | (200) | * | - | | | | | | 14 | 5/0 | 4/0 | E47/1 | | 36 6 | - | cm | п | | | | | 13 | 5/0 | 8/0 | E90/? | 0541/25/1 | - | - | cm | | | | | | 15 | 26/0 | 55/5 | E90/1 | 0150/20/2+ | - | - | cm | | | | | | 12 | 26/1 | 55/4 | E90/1 | 0417/30/2 | 435 | - | cm | | | | | | 16 | 51/2 | 30/3 | E90/1 | 0620/55/1+ | - | 46 | cm | | | Oct. | | | 30 | 58/3 | 23/2 | E90/1 | 1639/156/3+ | (4000) | - | m | II,IV | 21/0630/5 | 21/2241/sc/ms/7- | | | 9 | 62/4 | 19/1 | E90/1 | 1215/35/2 | 306 | - | - | | | | | | 12 | 70/5 | 11/0 | E90/1 | 0620/32/2 | _ , | ~ | cm | | | | | _ | | | | | , 02/2 | | | | | | L | TABLE 1. 1957 | | | | М | AJOR F | LARE | | | <u> </u> | SOLA | R REGION | | FI | ARE IM | PORTA | NCE | FLARE | AREA S | |---------------|--------------|------------|------------|-----------|------------|------|-------------|--------------|---------------|-------------------|--------------------------|-----|----------------------|-------|-------------------|--------|--------| | Serial
No. | Event
No. | Gr.
Day | Beg.
UT | End
U" | Max.
UT | Pos | ition | Plage
No. | Region
No. | Sunspot
Mt. W. | Number
Green-
wich | | io. /No.
Rep./ Ma | | м ^с м, | Range. | No. Re | | 85 | | Oct.
27 | 1300 | 1310 | - | S 23 | E01 | 4203 | 52 | 12718 | 18287 | 3 | 1/1 | 1- | 1 | 2 | 1 | | 86 | | Nov.
02 | 0904 | 0955 | 0918 | S 21 | W 16 | 4207 | 61 | 12732 | 18300 | 2+ | 8/2 | 1 | 2 | 6-14 | . 6 | | 87 | 206 | 05 | 1205 | 1257 | 1207 | S 24 | W54 | 4207 | 61 | 12732 | 18300 | 3 | 5/1 | 2- | 2 | 2-21 | 4 | | 88 | 208 | 06 | 0834 | 0900 | 0841 | S 28 | W67 | 4207 | 61 | 12732 | 18300 | 2+ | 9/2 | 2- | 2 | 2-19 | 7 | | 89 | | 10 | 0606 | 0735 | 0623 | S25 | E65 | 4237 | 79 | 12768 | 18327 | 3 | 4/1 | 2+ | 2 | 8-50 | 4 | | 90 | | 13 | 0800 | 0925 | - | N19 | W18 | 4230 | 74 | 12763 | 18326 | 3 | 5/1 | 2 | 2 | 2-13 | 4 | | 91 | 213 | 15 | 0517 | 0636 | 0537 | N18 | W45 | 4230 | 74 | 12763 | 18326 | 3 | 3/1 | 2- | 1+ | 5-20 | 3 | | 92 | 218 | 23 | 0750 | 0925 | 0804 | N26 | W54 | 4246 | 83 | 12779 | 18338 | 3 | 10/1 | 2+ | 2 | 4-18 | 8 | | 93 | 219 | 24 | 0848 | 1202 | 0911 | S14 | E37 | 4263 | 92 | 12788 | 18353 | 3+ | 7/1 | 3-,3 | 3 | 5-62 | 7 | | 94 | 224 | 29 | 0045 | 0600 | 0213 | N41 | E63 | 4282 | 104 | No Spots | | 3+ | 1/1 | 3+ | 3+ | 34 | 1 | | 95 | | Dec.
02 | 1025 | 1200 | 1107 | S 17 | W34 | 4269 | 96 | 12800 | 18357 | 2+ | 8.2 | 2- | 2+ | 3-14 | 7 | | 96 | | 03 | 1035 | 1430 | 1110 | S 19 | W49 | 4269 | 96 | 12800 | 18357 | 2+ | 4, 2 | 1 | 2 | 5-11 | 2 | | 97 | | 05 | 0548 | 0812 | 0657 | S 20 | W19 | 4288 | 103 | 12808 | 18361 | 3 | 4/1 | 2 | 2+ | 5-21 | 4 | | 98 | | 12 | 0249 | 0407 | 0314 | S 33 | W09 | 4301 | 116 | 12840 | 18385 | 3 . | 2/1 | 2- | 2 | 4-17 | 2 | | 99 | 234 | 12 | 1750 | 1859 | 1806 | N15 | W41 | 4295 | 1112 | 12832 | 18377 | 2+ | 4/2 | 2+ | 2+ | 7-9 | 3 | | 100 | 236 | 14 | 1245 | 1450 | - | N18 | E78 | 4314 | 126 | 12855 | 18398 | 3 | 2/1 | 3- | 2+ | 9-36 | 2 | | 101 | | 16 | 1125 | 1238 | 1140 | N17 | E50 | 4314 | 126 | 12855 | 18398 | 3 | 9, 1 | 2- | 2 | 6-28 | 6 | | 102 | | 18 | 0408 | 0550 | 0500 | N17 | E26 | 4314 | 126 | 12855 | 18398 | 3 | 4/1 | 2- | 2 | 3-18 | 4 | | 103 | | 18 | 0605 | 0712 | 0624 | N17 | E20 | 4314 | 126 | 12855 | 18398 | 3 | 2/1 | 2 | 2 | 14-17 | 2 | | 104 | 238 | 19 | 0757 | 1315 | 0801 | N20 | E13 | 4314 | 126 | 12855 | 18398 | 2+ | 4/2 | 2+ | 2+ | 5-12 | 4 | | 105 | | 21 | 2232 | 2400 | 2251 | N24 | E50 | 4321 | 136 | 12874 | 18408 | 3 | 3/1 | 3- | 2 | 13-22 | 2 | TABLE IA. IAU MAJOR FLARES (TABLE I.) 1957, REDUCED TO IMPORTANCE ≤ 2 IN THE McMATH WORKING LIST | Serial
No. | M ^C M
Serial | | Beg.
UT | Pos | | Imp:
IAU | ortance
M ^C M | Obs. Reporting
Max. Importance | Other Importances Reported | |---------------|----------------------------|-------------|------------|------------|-------------|-------------|-----------------------------|-----------------------------------|--| | | | Jan | | | | | • | | | | 4 | - | 14 | 0020 | S24 | E70 | 3 | 1 | Sydney | | | 6 | - | 23 | 0144 | S25 | W52 | 3 | 1 | Sydney | 1 | | | | Mar | | | | | | | 2+,2,2,2 | | 15 | - | 29 | 1025 | S15 | W4 0 | 3- | 2 | Capri F. | 2+,2,2,2 | | | | Apr | | | | | | | | | 18 | - | 08 | 0616 | S19 | W02 | 3 | 2 | Kharkov | 2+,2,2,2,2,1 | | | | June | | | | | | | | | 22 | - | 03 | 1040 | S18 | W18 | 3 | 2 | Wendelstein | 2+,2,2,2,2 | | 23 | - | 15 | 0730 | S18 | E62 | 3- | 2 | Meudon | 2+,2,2,2,2,2,2 | | 24 | - | 19 | 0600 | 539 | E24 | 3 | 2 | Istanbul | 2,2,2,2,1+,1: | | 25 | - | 19 | 1609 | N20 | E45 | 2+ | 2 | Capri S & Capri F. | 2,2 | | 26 | - | 24 | 0724 | N25 | W27 | 3 | 2 | Istanbul | 2+,2,2,1 | | 29 | - | 30 | 0814 | S28 | E60 | 3 | 2 | Uccle | 2,2,2,2,1+,1+,1+,1+,1 | | | | July | | | | | | | | | 35 | 105 | 08 | 0521 | N14 | W41 | 2+ | 2 | Abastumani and Tachkent | 2,2,2,1+,1+,1,1,? | | 36 | 236 | 21 | 0633 | N30 | E 15 | 2+ | 2 | Abastumani, Moscow & Utrecht | 2,2,2,2,2,1+,1 | | 37 | 242 | 21 | 1320 | N29 | E 12 | 3 | 2 | Kharkov | | | 39 | 275 | 22 | 1240 | S 23 | E 07 | 3 | 2 | Nizmir | 2,2,2,2,2,1 | | 41 | 346 | 27 | 0637 | S 24 | W61 | 2+ | 2 | Istanbul & Utrecht | 2,2,2,2,2,1+,1+,1
2,2,2,2,2,1+,1 | | | | Aug. | | N16 | | | | | 5,5,5,5,17,1 | | 44 | 628 | 23 | 1126 | N10
N24 | W17
E35 | | 2 | Uccle | 2+,2,2,2,1+,1+ | | 47 | 716 | 29 | 0545 | | | | | Abastamani & Mitaka | 2,2,1+,1+,1+,1 | | 48 | 723 | 29 | 1031 | S 25 | E 20 | | 2 | Arcetri | 2+,2,2,2,2,1+,1+,1+,1+,1 | | 49 | 737 | 30
Sept. | 0620 | N26 | E 22 | 2+ | 2 | Abastumani & Istanbul | 2,2,2,2,1+,1 | | 53 | 787 | 01 | 0946 | N12 | W09 | 3 | 2 | Uccle | 2,2,2,1+,1 | | 57 | 818 | 03 | 0647 | N15 | W38 | 3 | 2 | Moscow | 2+,2,2,1,1 | | 59 | 867 | 06 | 0751 | N23 | W66 | 3 | 2 | Moscow | 2+,2+,2+,2,2,2,2,2,2,1+ | | 60 | 900 | 09 | 0755 | N12 | E 22 | | 2 | Kharkov | 2+,2,2,2,2,2,2,1+ | | 62 | 909 | 10 | 0702 | S 17 | E 16 | | 2 | Nizmir | 2,2,2-,1+,1+,1+,1+,1+,1,1,1 | | 64 | 944 | 12 | 0703 | NOS | W15 | | 2 | Istanbul | 2,2,1+,1+,1+,1 | | 65 | 953 | 12 | 1510 | N11 | W18 | | 2 | Ondrejov | | | 68 | 1061 | 18 | 0624 | N23 | E 13 | | 2 | Crimee & Istanbul | 2+,2,2,2,2-,1+,1 | | 72 | 1079 | 19 | 0744 | N23 | E 01 | | 2 | Moscow & Wendelstein | 2,1+,1+,1 | | 73 | 1116 | 21 | 0518 | N09 | W01 | | 1 | Abastumani | 2,2,2,2,2,2,1+,1+,1
2,2,2,1+,1+,1+,1+,1,1 | | | | Oct. | | | | | | | | | 77 | 1368 | 09 | 0340 | S 38 | W14 | | 2 | Mitaka | 2,1+ | | 80 | 1498 | 16 | 0413 | S 26 | E 20 | | 2 | Mitaka | 2,2,1 | | 83 | 1582 | 21 | 1212 | S 25 | W52 | | 1+ | Wendelstein | 1+,1+,1 | | 84 | 1606 | 23 | 0621 | S 27 | W77 | 3 | 1+ | Mitaka | 1+ | | 85 | 1694 | 27 | 1300 | S 23 | E 01 | 3 | 1 | Zurich | | | 86 | 1785 | Nov.
02 | 0904 | S 21 | W16 | 2+ | 2 | Moscow & Utrecht | 22521.1 | | | | | 1205 | S 24 | | | 2 | | 2,2,2,2,1+,1 | | 87 | 1810 | 05 | 0834 | | W54 | | 2 | Kharkov | 2,1+,1,1 | | 88 | 1815 | 06 | | S 28 | W67 | | | Kiev Ko, Kiev Ky | 2,2,2,2,1+,1,1 | | 89 | 1841 | 10 | 0606 | S 25 | E 65 | | 2 | Abastumani | 2,2,2 | | 90 | 1880 | 13 | 0800 | N19 | W18 | | 2 | Capri F. | 2,2,1+,1 | | 91 | 1890 | 15 | 0517 | N18 | W45 | | 1+ | Sydney | 1+,1+ | | 92 | 1967 | 23 | 0750 | N26 | W54 | 3 | 2 | Moscow | 2+.2+,2,2,2,2,2,1 | 2.1-3 #### :ONTINUED) | DEG. | RELATED FLARE ACTIVITY | | | S.W.F. | | RADIO EM | ISSIONS | | POLAR CAP ABS. | GEOMAGNETIC STORMS | | | | | |------|------------------------|----------------|--------------------------|----------------|----------------|----------------|--------------------------|--------------------|------------------------------------|--|--|--|--|--| | Mean | Minor,
Before | Major
After | First Flare
Pos./Imp. | Beg. Dur. Imp. | Peak
10 cm. | Flux
1.5 m. | Other
Wave
Lengths | Dynamic
II & IV | Gr. / Beg. / Abs.
Day / UT / db | Gr. / Beg. / Type / W. / Max.
Day / UT / Kp | | | | | | 2 | 5/0 | 7/0 | E85/1 | | - | - | m | | | | | | | | | 10 | 31/0 | 16/2 | E87/1- | 0914, 26/2- | - | 432 | cm | | | Nov. | | | | | | 8 | 43/1 | 4/1 | E87/1+ | 1207/14/2+ | (550) | 38000 | cm,m | (IV) | | 06/1821/sc/ms/7o | | | | | | 9 | 43/2 | 4/0 | E87/1+ | 0833/29/3- | 572 | - | cm | | | | | | | | | 22 | 5/0 | 12/0 | E86/1+ | 0607, 18/1 | - | - | cm,m | | | | | | | | | 8 | 8, 0 | 5/1 | E75/1 | 0834 21,3 | ٠ | - | - | | | | | | | | | 15 | 10/1 | 3/0 | E75/1 | 0527, 51/1- | 537 | • | cm,m | | | | | | | | | 11 | 21/0 | 5/0 | E68/1 | 0757;40/2 | 560 | 1800 | cm | (IV) | | | | | | | | 22 | 6 0 | 29/0 | E75/1 | 0901-32/3- | 998 | 50000 | cm,m | (IV) | | 26/0155/sc/ms/7-
26/1454, g/ms/7- | | | | | | 34 | 0/0 | 0/0 | E63/3+ | | - | - | cm | 11 | | Dec.
01/0336/sc/ms/6- | | | | | | 9 | 15/0 | 11/1 | E58/1 | | - | - | cm | | | | | | | | | 8 | 19.1 | 7,10 | E58, 1 | | - | - | m | | | | | | | | | 14 | 31/0 | 12/0 | E90/1 | | 375 | - | cm | | | | | | | | | 11 | 3 · 0 | 0/0 | E75/1 | | - | - | - | | | | | | | | | 8 | 5/0 | 0.0 | E71/2+ | 1802, 28/1 | (94) | <u>54</u> | - | II | | | | | | | | 23 | 2.0 | 37, 4 | E90/1 | 1233, 67/3 | - | 5900 | cm,m | (IV) | | | | | | | | 14 | 7/1 | 32/3 | E90/1 | 1129/33/1+ | 366 | 50000 | cm,m | (IV) | | | | | | | | 11 | 11/2 | 28/2 | E90/1 | 0500/15/1+ | 409 | - | cm | | | | | | | | | 21 | 11/3 | 28 1 | E90/1 | 0620, 30/2 | - | 3500 | cm | | | | | | | | | 9 | 13 4 | 26, 0 | E90/1 | 0757, 23, 3 | - | 950 | cm,n | II, (IV) | | | | | | | | 18 | 5/0 | 25, 0 | E69/1+ | 2235, 65, 3+ | . 556 | - | rm | | | | | | | | #### TABLE IA. (CONTINUED) | Serial M ^C M
No. Serial | | Date | Beg.
UT | Pos | ition | Impo
IAU | rtance
M ^C M | Obs. Reporting
Max. Importance | Other Importances Reported | |---------------------------------------|------|------|------------|------|-------|-------------|----------------------------|-----------------------------------|----------------------------| | -
| | Dec. | | | | | | | | | 96 | 2135 | 03 | 1035 | S19 | W49 | 2+ | 2 | Uccle & Nera | 2,1+ | | 98 | 2231 | 12 | 0249 | S 33 | W09 | 3 | 2 | Sydney | 1 | | 101 | 2270 | 16 | 1125 | N17 | E 50 | 3 | 2 | Kharkov | 2+,2+,2,2,2,2,1+,1+ | | 102 | 2281 | 18 | 0408 | N17 | E 26 | 3 | 2 | Mitaka | 2,2,1 | | 103 | 2262 | 18 | 0605 | N17 | E 20 | 3 | 2 | Sydney | 2 | | 105 | 2326 | 21 | 2232 | N24 | E 50 | 3 | 2 | Honolulu | 2.2 | # TABLE IB. FLAR S REPORTED BY ONLY ONE OBSERVATORY - IAU IMPORTANCE 2+ | M [°] M
Serial
No. | Date | Beg.
UT | End
UT | Max.
UT | Posit | ion | Plage
No. | Observatory | |-----------------------------------|-------|------------|-----------|------------|-------|------|--------------|--------------| | | Jan. | | | | | | | | | | 05 | 0157 | 0240 | 0157 | S 24 | E 61 | 3813 | Mitaka | | | 07 | 1830 | 1840 | - | N20 | W65 | 3808 | Mc Math | | | 11 | 0730 | 0857 | 0800 | S 24 | W25 | 3813 | Istanbul | | | 20 | 1850 | 2015 | 1920 | N14 | E 14 | 3823 | Sac. Peak | | | Feb. | _ | | | | | | | | | 25 | 0937 | 0954 | 0945 | S 24 | W80 | 3855 | Herstmonceux | | | Apr. | | | | | | | | | | 06 | 1144 | 1153 | 1145 | N24 | W90 | 3909 | Crimee | | | July | | | | | | | | | 209 | 18 | 0852 | 1134 | 0916 | S 09 | E 19 | 4066 | Moscow | | 279 | 22 | 1403 | 1410 | - | N28 | E 02 | 4063 | Moscow | | | Sept. | | | | | | | | | 1158 | 23 | 1211 | 1340 | 1242 | N09 | W44 | 4152 | Kiev Ko | | | Nov. | | | | | | | | | 2001 | 25 | 0717 | 0743 | - | N23 | W55 | 4247 | Athens | #### TABLE IC IMPORTANCE 2+ FLARES NOT LISTED AS MAJOR FLARES | Date | Beg.
UT | End
UT | Max.
UT | Position | | IAU
Max. | Importance
By Others | M ^c M | Total Sta.
Reported | | Range | Area
No.
Rept. | Mean | | |------------|------------|-----------|------------|----------|------|-------------|-------------------------|------------------|------------------------|------|-------|----------------------|------|--| | Jan.
08 | 1006 | 1142 | - | S 20 | E 14 | 2+ | 2 | 2+ | 2 | 3813 | 9-20 | 2 | 15 | | | July
03 | 0544 | 0610 | 0545 | N09 | E 14 | 2 + | 1 | 2+ | 2 | 4046 | 3 | 1 | 3 | | | Oct.
19 | 1916 | 2006 | 1925 | S 25 | W21 | 2+ | 2 | 2+ | 2 | 4189 | 21 | 1 | 21 | | # TABLE II. CATALOGUE OF IMPORTANT SUNSPOT GROUPS DURING 1957 This catalogue will list all sunspot groups that, during disk passage, meet one or more of the following requirements: - (a) All sunspot groups with a maximum area, during disk passage, equal to or greater than 500 millionth of the solar hemisphere, as recorded in the Royal Greenwich Observatory Bulletin No. 26 Photoheliographic Results, 1957 (reference 61). - (b) All sunspot groups that have a γ or $\beta\gamma$ magnetic classification as reported by Mt. Wilson Observatory in Reference 66. - (c) All sunspot groups associated with the major solar flares catalogued in Table I. The column headings together with any necessary explanations follow: Column 1 Catalogue Serial Number. Column 2 Mt. Wilson Sunspot Number. - Column 3 Greenwich Sunspot Number. In a few cases the identification of a Mt. Wilson spot with a Greenwich spot was difficult and may be subject to change. Occasionally two Mt. Wilson groups correspond to one Greenwich group and vice versa. The associations given in this catalogue were obtained by studying microfilm of the Mt. Wilson sunspot drawings, the Zurich maps and spot positions given in reference 54 with the daily spot datagiven in reference 61. - Column 4 Catalogue Classification from a, b, or c Above. A sunspot with a maximum area greater than 500 millionth is designated in this column by the letter L. If the entry is due to the magnetic classification, the letter M is used. If the sunspot groups are associated with a major flare, the flare serial number or numbers are used. There will be cases where all three symbols may appear in the column, as well as more than one major flare. - Column 5 McMath Plage Number. - Column 6 Sunspot Mean Latitude During Disk Passage. - Column 7 Sunspot Mean Longitude During Disk Passage. - Column 8 Time of Central Meridian Passage. This date is given to the nearest one-hundredth of a day if the group crossed the central meridian. If the spot was last seen east of the central meridian or was first seen west of the central meridian, the CMP time is estimated and given to the nearest tenth of a day. - Column 9 Spots in the Plage. We have given the Mt. Wilson numbers for all sunspots in the plage during disk passage, these are from McMath-Hulbert unpublished data. - Column 10 Plage Catalogue Serial Numbers. If the plage is included in the Table III catalogue, detailed data for the sunpots listed in Column 9 are given in that table. - Column 11 Maximum Area. This is the corrected area given in the Greenwich Report. The first number gives the area of the umbra, the second number is the area of the whole spots that make up the group. Both values are expressed in units of millionth of the solar hemisphere. - Column 12 Position of the Maximum Area. - Column 13 Greenwich Day of Maximum Area. - Column 14 This is the time interval in days from the date of maximum area to the date of the flare (when applicable). A negative number indicates that the flare occurred after the spot group had attained the maximum area. - Column 15 Mean Area. This is the corrected value given in the Greenwich general catalogue of sunspots. The first number is the mean umbra area, the second number gives the corrected mean area for the whole spots. - Column 16 Mean Magnetic Class. The value given in reference 66 is used. (The symbols are defined on page 2.II-9) - Column 17 Mean Magnetic Strength. The values in units of 100 Gauss have been taken from reference 66. - Column 18-23 give the values on flare day when applicable: (18) flare day; (19) Corrected area; (20) Zurich classification; (21) Magnetic classification; (22) Magnetic field strength, and (23) Position. If more than one major flare occurred in the spot the flare day and flare day data are given in successive lines corresponding to the flare serial numbers given in Column 4. - Column 24 Disk Passage Data. The five lines in this column give the following data: Top Line - The left hand number gives the date on which the sunspot was first seen; the right hand number gives the date on which the sunspot was last seen. These data have been taken from the three references 65, 61, and/or 34. <u>Second line</u> - The left hand number gives the longitude from the central meridian where the spot was first seen; the right hand number gives the longitude distance from the central meridian where the spot was last seen. Third line - This line gives the Zurich classification of the spot for each day (on which a classification was made) during disk passage as recorded in reference 54. (An explanation of the classification is given on page 2.II-9. Fourth line - The Mt. Wilson magnetic classification of the sunspot on each day that a classification was made during disk passage. If the classification is an estimate, the symbol is enclosed in brackets. The data for this line are taken from a microfilm of Mt. Wilson daily work sheets. (Reference 63). Last line - This gives the magnetic field strength in units of 100 gauss for each day on which the field strength was measured and shown on the Mt. Wilson daily sunspot maps. The values given on this line are the maximum values shown on the map. - Column 25 Recurrent Spots. If the sunspot group is the return of a previous group determined by Mt. Wilson and/or Greenwich, the serial number, or numbers, of the groups during the previous rotation or rotations are given. The top numbers give the Greenwich sequence, the bottom numbers give the Mt. Wilson sequence. - Column 26 Remarks. A general description of the spot group adapted from reference 61 is given. | | | | | The state of s | OF THE OWN | | | | | | | | | | | | | | T | AB | LE 1 | 1 1 | 957 | |---------------|-----------------|--------------------|----------------
--|------------|-------|---------------------------------------|-------------------------|-------------------------------|----------|------------------|-------|-------------|----------------|-------------------------|-------|----------------------|-----------------|----------|------------------|------------|------------------------|-------------| | | | | | | SITION D | DATA | · · · · · · · · · · · · · · · · · · · | | | \vdash | | MAXIM | UM ARE | A | | SUN | SPOT I | MEAN D | ATA | | | MA | JOR | | Serial
No. | Sunspo
MT.W. | t Number
Green, | Category | McM
Plage | Lat. | Long. | C.M.P. | All Spots
in Plage | Plage Serial
No. Table III | Um | b. Whole
Spot | Po | sition | Gr.
Day | Flare
^Δ T | | rea
Whole
Spot | Mt. W
Mag. (| | Gr.
Day | A
Umb. | rea
. Whole
Spot | Zuri
Cla | | 15 | 12216 | 17927 | 15, L
16 | 3899 | S14 | 264 | March
26,32 | 12221
12216
12230 | 11 | 181 | 1447 | S14 | £50 | March
22,42 | -7
-10 | 171 | 1133 | lβρl | 34 | 29
Apr.
02 | 149 | 991 | E | | 16 | 12225 | 17934 | L | 3908 | N28 | 268 | 26,06 | 12225
12231
12239 | - | 100 | 639 | N28 | W62 | 31.41 | i | 34 | 241 | dβ l | 5 | | | • | | | 17 | 12235 | 17935 | 17, L | 3907 | S15 | 219 | 29.79 | 12232
12235
12228 | 12 | 91 | 734 | S 16 | W72 | April
04.39 | +1 | 38 | 240 | dβℓ | 14 | 03 | 110 | 682 | E | | 18 | 12238 | 17943 | L | 3914 | S 23 | 131 | April
05.41 | 12250
12238 | - | 84 | 562 | S 23 | E13 | 04.39 | | 34 | 201 | lßl | 23 | | | | | | 19 | 12245 | 17952 | L | 3919 | N21 | 127 | 05.74 | 12245 | - | 139 | 815 | N21 | W45 | 09.11 | | 60 | 351 | dβpl | 22 | | | | | | 20 | 12254
12258 | 17954 | 19, L | 3923 | S 22 | 43 | 12.12 | 12254
12258 | 14 | 115 | 937 | S 23 | W70 | 17,58 | +6 | 112 | 665 | lopl
dß | 33
14 | 11 | 97 | 544 | E | | 21 | 12259 | 17956 | 18 | 3916 | S 27 | 106 | 07.30 | 12259
12262
12241 | 13 | 46 | 369 | S 26 | W40 | 10.58 | +2 | 35 | 237 | dβр | 12 | 8 | 52 | 270 | D | | 22 | 12261 | 17958 | L | 3920 | N26 | 111 | 07.00 | 12261 | - | 62 | 516 | N26 | w57 | 11.34 | | 49 | 332 | dβl | 18 | | | | | | 23 | 12285 | 17976 | 20, L, M
21 | 3941 | S16 | 261 | 22.87 | 12285 | 15 | 128 | 1000 | N28 | E66 | 17.58 | +1 | 70 | 432 | lβγd | | | _
128 : | 1000 | E | | 24 | 12297 | 17988 | L | 3953 | S17 | 193 | 27.99 | 12297 | - | 79 | 502 | S18 | E47 | 24.30 | | 57 | 338 | $eta_{P}\ell$ | 14 | | | | | | 25 | 12299 | 17990 | L | 3956 | S05 | 166 | 30.04 | 12299 | - | 68 | 560 | S04 | E64 | 25.35 | | 43 | 245 | lβpl | 20 | | | | | | 26 | 12315 | 18004 | L | 3969 | S 25 | 117 | May
03.76 | 12315 | - | 91 | 499 | S 25 | w 20 | May
05.32 | | 69 | 376 | dβpℓ | 18 | | | • | | | 27 | 12318 | 18006 | L, M | 3972 | S 28 | 23 | 10.86 | 12318 | 16 | 178 | 1270 | S 28 | W17 | 12.34 | | 175 1 | 1057 | lßyl | 23 | | | | | | 28 | 12324 | 18008 | L, M | 3974 | N12 | 16 | 11.36 | 12324
12326 | 17 | 237 | 1713 | N11 | w 30 | 13.54 | | 216 1 | 415 | lβyl | 30 | | | | | | TAINT . | 301 | | -13-6 | JOKING 1737 | DETUDN SEQUENCE | GREENWICH DESCRIPTION | |----------------------|-----|-------------------|--------------------------|---|----------------------------|---| | LARE DAY I | ATA | | | DISK PASSAGE DATA | RETURN SEQUENCE Greenwich | GREEN WOLL 2 250 July 113 | | ch Mag.
ss Class. | Н | Posi | tion | Days Seen, Positions Seen, Zurich Class.,
Mag. Class., Magnetic Strength | and/or MT.W. | | | -
(βρ)
βρ | 14 | N18
N18 | W75 |
$\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 12016 | A large stream, of which the intermediate spots grow and gradually coalesce with the leader to form a large composite spot, which is the only surviving component at the limb. A composite spot, slowly disintegrating. After a few days, other small spots appear, forming a stream. The whole group is dying out as it reaches the limb. | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A small spot when first see, developing into a stream led by a fairly stable regular spot. The intermediate spots become the largest component, but do not survive to the west limb. A composite spot, which by January 22 divides into two and | | αp
(αp) | 24 | S 27 | E60
W21
W53
W83 | Jan. 13 E68 W83 H H H H H H H H H H H H H H J - - ap (ap) ap ap \(\beta_p\) (\beta_p) - ap (ap) (ap) - 24 - 26 17 15 - 29 | 12048 | begins to die out. | | -
-
- | - | N16
N16
N16 | W27 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 12040 | A regular spot until January 22, when other spots begin to appear and coalesce with it to form a large composite structure. | | | | | | Jan. 18 E80 D D E E E E E E D D D C J βρ (β) (β) | | A cluster, soon becoming a stream of three fairly stable spots. | | x | 4 | N14 | E 0 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A stream, with a brief maximum on January 29. | | - | - | S 22 | W08 | Feb. 3 Feb. 13 W81 A B D D D C C A C A A (X) $\beta_{\mathcal{P}}$ ($\beta_{\mathcal{P}}$) ($\beta_{\mathcal{P}}$) ($\beta_{\mathcal{P}}$) $\beta_{\mathcal{P}}$ ($\beta_{\mathcal{P}}$) $\beta_{\mathcal{P}}$ - $\alpha_{\mathcal{P}}$ ($\alpha_{\mathcal{P}}$) | | A small stream of changing spots. | | | | | | Feb. 14 Feb. 25 W79 A B A A A B C E E G - $\beta_{\mathcal{P}}$ | | Intermittent. A few small spots until February 16 (Mt. Wilson 12143); on February 20, new spots appear (Mt. Wilson 12150) and the whole quickly develops into a bi-polar, group. | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | A stream, undergoing considerable changes. The leader eventually becomes a regular spot. | | - * | • | N14 | W37 | Feb. 22 | | A few small spots, rapidly developing into a bi-polar group.
On February 27 other spots appear to form a stream, which
appears to be declining as it passes from view. | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A stream of normal type. | | βρ | 22 | S 21 | E30 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | A stream, growing rapidly from a few tiny spots first seen on March 10. The leader at first divides but by March 20 becomes a regular spot. The follower alsoundergoes changes and is dying out when the group reaches the limb. | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | A stream, in which the three principal components are regular spots. The whole group is dying out as it reaches the limb. | | | | | | | | | 2.2-1 # TABLE II CATALOGUE OF IMPOR | | | | | poetro | ON DATA | | т | | | | м | AXIMUM | I AREA | | | SUNS | SPOT N | IEAN D | ATA | | | MAJ | OR I | |---------------|--------------------|------------------|----------------------|--------------|---------|----------|----------------|--|-------------------------------|------|-------|--------|--------|---------------|----------------------|------|---------------|---------------|-----------|----------------------|-----------------------|---------------|--------| | | | | <u> </u> | | | | | A11 C-045 | Dlama Comial | Ilmb | Whole | Posi | | Gr. | Flare | | rea | | /ilson | Gr. | Α | rea | Zui | | Serial
No. | Sunspot N
MT.W. | Vumber
Green. | Category | McM
Plage | Lat. I | Long, C. | .М.Р. | All Spots
in Plage | Plage Serial
No. Table III | omb, | Spot | POSI | | Day | ΔT | Umb. | Whole
Spot | Mag. C | п. н | Day | Umb. | Whole
Spot | Cl | | 1 | 12054 | 17803 | 2,L,M
3 | 3808 | N19 | 272 | Jan.
02.74 | 12054 | 2 | 293 | 2089 | N18 | W62 | Jan.
07.46 | 0
-1 | 228 | 1351 | lByl | 35 | Jan.
07
08 | 293 | 2089
1747 | F
F | | 2 | 12068 | 17814 | 1, L | 3813 | S 24 | | 09.55 | 12079
12066
12074
12075
12068
12080
12076
12081 | 1 | 135 | 979 | S 23 | E79 | 03.41 | -3 | 57 | 368 | lßpl | 13 | 06 | 85 | 508 | н | | 3 | 12075 | 17816 | L | 3813 | S16 | 184 | 09.44 | Same as | 2 | 96 | 540 | S15 | E02 | 09.28 | | 59 | 354 | dB\$ | 15 | | | | | | 4 | 12085 | 17829 | 4, L
5
6
10 | 3820 | S 27 | 61 | 18.77 | 12086
12096
12085
12087
12107
12099 | 3 | 94 | 636 | S 27 | E17 | 17.43 | +3
-3
-6
-8 | 96 | 496 | lopl | 29 | 14
20
23
25 | 89
123
87
43 | 557
523 | H
H | | 5 | 12089 | 17833 | 7, L
8
9 | 3823 | N17 | 18 | 22.05 | 12089
12093
12094 | 4 | 203 | 1581 | N16 | W55 | 26.28 | +3
+2
+2 | 126 | 778 | lapl | 34 | 23
24
24 | 126
152
152 | 844 | H | | 6 | 12095 | 17838 | L | 3824 | S16 | 344 | 24,62 | 12095 | - | 103 | 742 | S17 | E56 | 20.30 | | 70 | 458 | lβ | 15 | | | | | | 7 | 12114 | 17850 | 11, L | 3830 | N15 | 257 | 31.20 | 12109
12110
12114
12113 | 5 | 52 | 504 | N15 | E23 | 29.37 | -2 | 26 | 160 | dapl | 10 | 31 | 32 | 183 | С | | 8 | 12122 | 17860 | 12 | 3843 | S 21 | 159 | Feb.
07.65 | 12121
12122
12123 | 7 | 63 | 211 | S 22 | E02 | Feb.
07.44 | -1 | 21 | 104 | dê ş | 10 | Feb
08 | 32 | 194 | i c | | 9 | 12143
12150 | 17875 | L | 3856 | 80И | 10 | 18.99 | 12140
12143
12150 | - | 148 | 729 | N08 | W58 | 23,30 | | 37 | 209 | d Bed
dBed | 2
2 20 | | | | | | 10 | 12144 | 17877 | L | 3855 | S 22 | 7 | 19.25 | 12139
12144 | - | 88 | 688 | S 22 | W01 | 19.38 | | 65 | 458 | dβpl | 16 | | | | | | 11 | 12154 | 17884 | 13, L | 3863 | N14 | 289 | 25.17 | 12157
12154
12152 | 9 | 95 | 512 | N14 | E12 | 24.31 | -4 | 59 | 348 | dβρd | 27 | 28 | 76 | 6 455 | 5 F | | 12 | 12159 | 17887 | L | 3866 | N32 | 248 | 28.26 | 12159 | - | 132 | 935 | N33 | w26 | Marc
02.35 | | 88 | 640 | dβp | l 22 | | | | | | 13 | 12191 | 17911 | 14, L | 3888 | S 21 | 41 | March
15.97 | 12202
12207
12191
12204 | 10 | 111 | . 783 | S 21 | ₩06 | 16.46 | 5 +3 | 86 | 522 | ί βρί | 2 26 | Ма
13 | | 1 58 | 2 (| | 14 | 12213 | 17924 | L | 3897 | S17 | 301 | 23.52 | 12213
12214 | - | 80 | 5 502 | S16 | E14 | 22.42 | ! | 55 | 329 | lßpl | ℓ 23 | | | | | 2.2-1 2. # (Continued) | FLARE DAY DATA | DISK PASSAGE DATA | RETURN SEQUENCE GREENWICH DESCRIPTION | |--------------------------------|---|--| | ch Mag. H Position
s Class. | Days Seen, Positions Seen, Zurich Class.,
Mag. Class., Magnetic Strength | Greenwich
and/or MT.W. | | βρ 28 S14 W40 | Mar. 20 | A large, fairly stable stream of normal type. | | | Mar. 21 | A few tiny spots, which develop into a stream of normal type by the time they reach the limb. Zurich class for period 3/21 through 3/24 probably Mt. Wilson 12219, Greenwich 17928. | | (β) - S16 W55 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Intermittent, At first a few small variable spots. On April 1, a composite cluster appears. | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | A pair of composite spots, developing from one or two small spots when first seen at the east limb. | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | A pair of small spots. | | (αρ) - S21 E06
(β) - | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | A regular spot when first seen on April 5 (Mt. Wilson 12254). On April 7 other spots begin to appear immediately south of it (Mt. Wilson 12258) and by April 15, the group becomes a stream led by a regular spot. | | (X) E26 W13 | Apr. 7 | A cluster of spots, developing rapidly from a single spot on April 7. | | | Apr. 8 Apr. 13
$\Xi 19$ W77
B D D D D -
(X) β $\beta \rho$ (β) β (α)
- 19 18 - 9 - | A bi-polar group, developing rapidly from one or two small spots first seen on April 8. | | N28 E66 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 17934 A composite spot, slowly breaking up and dying out. | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | A stream, in which the leader becomes a composite spot and is the last to survive. | | | Apr. 24 | A bi-polar group, which becomes a stream of normal type. The group is dying out as it reaches the limb. | | | May 2 | A stream of normal type, appearing suddenly near the central meridian. From May 7, only the leader and follower are left. | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A long stream of normal type, in which the spots following the leader assume regular outline. As the group approaches the limb it is led by a pair of regular spots. | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | A large stream, led by regular spot. The intermediate spots coalesce and form an elongated composite spot, which however, breaks up again as it approaches the limb. | 2.2-2- | | | | | | | | | | | | | | | | | | | ' | BLE | | | _ | |---------------|------------------|------------------|-------------------------|--------------|------------|-------|---------------|---|-------------------------------|-----------|---------------|------------|------------------|-------------------|-----------|-----------------------|----------------------|-----|------------------------|-----------------|--------------------|-----| | | | | | POSITION | N DATA | | | | | | N | MAXIMUM | AREA | | SUN | SPOT I | MEAN DA | ATA | | | М | AJO | | Serial
No. | Sunspot
MT.W. |
Number
Green, | Category | McM
Plage | Lat. | Long. | C.M.P. | All Spots
in Plage | Plage Serial
No. Table III | Umb, | Whole
Spot | Positi | on Gr.
Day | Flare | Ar
Umb | ea
. Whole
Spot | Mt. Wi | | Gr.
Day | Ar
Umb. | | | | 44 | 12417 | 18073 | 27, L, M | 4024 | N21 | 174 | June
22.87 | 12415
12417 | 25 | 245 | 1231 | N21 | Jun
E72 17.: | | 170 | 921 | lByl | 39 | June
24 | 180 | 900 | I | | 45 | 12426 | 18078 | L | 4030 | S 21 | 143 | 25.21 | 12426
12435 | 26 | 341 | 2334 | S 21 | E11 24. | 32 | 317 | 2016 | lβρί | 37 | | | • | | | 46 | 12434 | 18084 | 28, L
30
31
32 | 4039 | N11 | 76 | 30.23 | 12433
12434
12445 | 27 | 109 | 606 | N11 1 | E39 27. 3 | -1
-3
-5 | 92 | 537 | la pl. | 35 | 28
30
July
02 | 83
89
121 | *442
606
600 | Н | | 47 | 12443 | 18087 | L | 4043 | S12 | 61 | July
02.24 | 12443 | 28 | 143 | 840 | S12 | E65 27. | -8
36 | 131 | 693 | lβp1. | 33 | 03 | 108 | 500 | н | | 48 | 12449 | 18092 | 29, L, M | 4044 | S 29 | 8 | 05.39 | 12449 | 29 | 271 | 1836 | S 30 | E65 30. | 31 0 | 184 | 1354 | lyl | 35 | June
30 | | 1836 | F | | 49 | 12451 | 18094 | 35 | 4046 | N13 | 7 | 05.51 | 12453
12447
12451 | 30 | 72 | 486 | N13 | Jul
E36 02. | | 44 | 242 | ℓβ+°£ | 19 | July
08 | 21 | 141 | E | | 50 | 12456 | 18096 | 33 | 4048 | N13 | 338 | 07.69 | 12456 | 31 | 37 | 285 | N13 | E79 01.6 | 7 -3 | 25 | 137 | lpfa | 13 | 04 | 48 | 268 | r | | 51 | 12462 | 18099 | L | 4051 | S11 | 303 | 10.28 | 12462 | 32 | 102 | 596 | S12 | E65 05. | 35 | 46 | 288 | Lβd | 26 | İ | | | | | 52 | 12473 | 18106 | L, M | 4061 | S 32 | 246 | 14.60 | 12473 | 33 | 111 | 769 | S 32 | w 22 16. | 29 | 74 | 530 | dγl | 25 | | | | | | 53 | 12491 | 18121 | 36, L
37 | 4065 | N30 | 144 | 22.32 | 12489
12494
12481
12487
12491 | 34 | 119 | 563 | N31 | E09 21. | 60 0 | 64 | 288 | lßfl | 23 | 21
21 | 119
119 | | | | 54 | 12494 | 18131 | L | 4065 | N12 | 186 | 19,20 | 12511
Same as | 53 | 44 | 707 | N13 | w80 25. | 36 | 28 | 150 | дβг | 4 | | | | | | 55 | 12496 | 18122 | 39,L
40
41 | 4070 | S 23 | 139 | 22.71 | 12507
12 4 96 | 36 | 111 | 568 | S 23 | w08 23. | 33 +1
-1
-4 | 74 | 428 | lβρί | 29 | 22
24
27 | 90
81
48 | 443
504 | 1 | | 56 | 12500 | 18127 | L | 4073 | N32 | 32 | 24.05 | 12500 | - | 107 | 544 | N32 | W17 25. | 36 | 53 | 304 | аβрв | 20 | | | | | | 57 | 12503 | 18128
18139 | 38, L
L | 4075 | N10
N14 | | 25.89
26.2 | 12503
12520 | 35 | 181
93 | 1256
821 | N10
N13 | Au | ζ. | 122 | 784
5 150 | | 26 | 22 | 181 | 125 | 3 | | 58 | 12513 | 18136 | L | 4082 | S 28 | 15 | Aug.
01.10 | 12513
12525
12514 | 37 | 95 | 507 | S 27 | W 54 05. | 33 | 58 | 308 | <i>l</i> αρ <i>l</i> | 26 | | | | | | | | | | | | | | L | | L | | | | | | | | | | | | | 2.2.4. 0 # (Continued) | LARE DAY DA | ATA | | DISK PASSAGE DATA | RETURN SEQUENCE | GREENWICH DESCRIPTION | |-----------------|-----|--------------------|---|------------------------|--| | ch Mag. | н | Position | Days Seen, Positions Seen, Zurich Class.,
Mag. Class., Magnetic Strength | Greenwich and/or MT.W. | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A long stream, in which the follower, a regular spot, is the most stable member and alone remains by May 21. | | • | | | May 14 May 18 W24 W77 A B C E D D D D D D D D D D D D D D D D D D | | A bi-polar group, forming near the west limb. | | • | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 17987 | A regular spot with some companions until May 24. | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A stable regular spot, with a few tiny companions on May 28. | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A variable group until May 29. On the next day a stream of normal type takes its place. | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A regular spotuntil May 28, after which it begins to break up. | | | | | May 29 June 10 E81 : W79 - G H H H H H H H C C - (α) $\frac{d\rho}{d\rho}$ ($\frac{d\rho}{d\rho}$) \frac | | A slowly-diminishing regular spot with a few variable companions until June 7. | | : βf 1 | .4 | S18 W17 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A stream, growing on the disk, in which the intermediate spots become the largest component. The whole group is dying out as it approaches the limb. | | :
: | | | June 2 June 14 E76 W80 C E E E E G G G H H H H - (\mathbf{X}) $\beta \rho$ $(\beta \rho)$ $\beta \rho$ $(\beta \sigma)$ $\beta \rho$ $(\beta \sigma)$ $\beta \rho$ $(\beta \sigma)$ $(\beta \rho)$ $(\beta$ | | A composite spot, splitting into two parts; the leading portion becomes a stable regular spot while the following part soon breaks up and dies out. | | | | | June 2 June 9 E18 W81 A B B C D D 3ρ βρ β (β) βf (β) (α) - 2 10 14 - 16 | | A compact stream forming on the central meridian. | | • | | | June δ June 13
W15 W73
A B D E G -
(X) (X) βρ βρ (β) (β)
- 12 12 - | | One or two small spots, growing rapidly into a composite structure as the group approaches the limb. | | | 2 | NIE SOO | June 8 June 20 E76 F F F F F E E D (\mathbf{x}) (β) $(\beta$ | | A stream, led by a large composite spot which is breaking up and diminishing as it approaches the limb. | | ap 21 | | N15 E58 | June 13 E83 C C C D D D D D C C - (X) ip ap ap (ap) ap ap ap ap ap ap ap ap (ap) (ap) | | A stream in which the follower, a regular spot, is the only stable member. | | a | 3 | S37 E23 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 6 | At first a bi-polar group. On June 18 intermediate spots appear to form a stream consisting of a leading regular spot followed by two large composite spots. | | ар 2'
(ар) - | | N16 E30
N16 W36 | June 15 E84 - J J J J J J J J J J J J J J J J J J | | A close pair of spots, soon becoming regular in outline and slowly diminishing. | | -3 | | | 2 | .2-3 | 2 | TABLE II
1957 | | | | | | POSITIO | N DATA | Α | | | | M | AXIMUM AREA | \ | | SUNS | SPOT N | IEAN D. | ATA | | | MAJO | |---------------|------------------|------------------|-------------|--------------|---------|--------|---------------|---|-------------------------------|------|---------------|-------------|---------------|-------------|------------|---------------------|-------------------|--------------|------------|---------------|----------------------| | Serial
No. | Sunspot
MT.W. | Number
Green. | Category | McM
Plage | Lat. | Long. | C.M.P. | All Spots
in Plage | Plage Serial
No. Table III | Umb. | Whole
Spot | Position | Gr.
Day | Flare
△T | Ar
Umb. | ea
Whole
Spot | Mt. Wi
Mag. C | lson
I. H | Gr.
Day | Are
Umb. V | a 7
Whole
Spot | | 29 | 12330 | 18013 | L | 3979 | S11 | 297 | May
17.40 | 12330
12331
12351
12332 | 18 | 97 | 559 | N11 E50 | May
13.54 | | 58 | 341 | lbfl | 23 | | | | | 30 | 12333 | 18016 | L | 3982 | S17 | 360 | 12.6 | 12333 | - | 89 | 712 | S17 W77 | 18.32 | | 56 | 351 | dßfl | 20 | | | | | 31 | 12346 | 18025 | L | 3984 | S10 | 204 | 24.40 | 12354
12345
12346 | - | 79 | 508 | S11 E65 | 19.38 | | 50 | 266 | lapl | 16 | | | | | 32 | 12353 | 18032 | L | 3991 | N22 | 161 | 27,61 | 12353 | - | 97 | 508 | N22 E28 | 25.44 | | 90 | 472 | lapl | 35 | | | | | 33 | 12356 | 18037 | L | 3987 | N22 | 194 | 25.18 | 12347
12356 | 19 | 109 | 721 | N25 W78 | 31.31 | | 43 | 263 | ₫₿₽ | 13 | | | | | 34 | 12357 | 18035 | М | 3993 | S 23 | 133 | 29.78 | 12363
12357 | • | 59 | 427 | S24 W20 | 31.31 | | 48 | 306 | Lγl | 15 | | | | | 35 | 12365 | 18041 | L | 3997 | S17 | 59 | June
04.37 | 12376
12365
12377
12379 | - | 73 | 553 | S17 E10 | June
02.55 | | 67 | 428 | lβpt | 30 | | | | | 36 | 12368 | 18043 | 22, L, M | 3996 | S17 | 86 | 02.31 | 12360
12368 | 20 | 112 | 787 | S18 W17 | 03.64 | 0 | 55 | 364 | dβγl | 13 | June
03 | 112 | 787 | | 37 | 12373 | 18049 | L | 4002 | S18 | 7 | 08.29 | 12378
12398
12373
12410
12389 | - | 121 | 671 | S18 E46 | 04.64 | | 90 | 540 | lBp l | 30 | | | | | 38 | 12375 | 18050 | L | 4001 | N10 | 74 | 03.30 | 12375 | - | 77 | 550 | N10 WŠÍ | 09.37 | | 41 | 288 | JBL | 15 | | | | | 39 | 12383 | 18055 | L | 4003 | S13 | 18 | 07.50 | 12383
12385
12382
12396 | - | 51 | 764 | S30 W78 | 13.30 | | 44 | 410 | dpl | 11 | | | | | 40 | 12387 | 18057 | L, M | 4011 | N32 | 283 | 14.60 | 12411
12387 | 21 | 172 | 1487 | N32 E68 | 09.37 | | 133 | 1007 | lβ _Υ l | 23 | | | | | 41 | 12407 | 18067 | 23, L | 4022 | S16 | 218 | 19.56 | 12403
12406
12407 | 23 | 104 | 500 | S15 E15 | 18.32 | +3 | 67 | 346 | lapl | 26 | 15 | 59 | 329 | | 42 | 12409 | 18068 | 24. L | 4021 | S 37 | 197 | 21.11 | 12409 | 24 | 328 | 2049 | S38 W18 | 22.54 | +3 | 244 | 1499 | lßl | 27 | 19 | 256 | 1393 | | 43 | 12415 | 18071 | 25, L
26 | 4024 | N16 | 8 186 | 21.96 | 12415
12417 | 25 | 167 | 1062 | N16 E74 | 16.55 | -3
-8 | 161 | 844 | lapl | 26 | 19
24 | 171
163 | 2.2-3 # (Continued) | R FLARE DAY DATA | DISK PASSAGE DATA | RETURN SEQUENCE GREENWICH DESCRIPTION | |---|---|--| | ich Mag. H Position
ass Class. | Days Seen, Positions Seen, Zurich Class.,
Mag. Class., Magnetic Strength | Greenwich
and/or MT.W. | | (β _Y) - N21 W17 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A large regular spot with a composite structure in: mediately south of it which breaks up and disappears by June 28. Maximum area 1231 on both June 17 and 18. On June 18, umbra area was 288. | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A large typical bi-polar group. | | αρ 29 N11 E26
βρ 34 N11 W01
(X) - N10 W26
γ 18 N10 W40 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A regular spot, with a number of small unstable companions until July 2. | | | June 26 July 8 E76 W82 - G G G G G G G G G G G G G G G G G G | A large stable regular spot with one or two small following companions. | | γ 16 S30 E65 | June 29 July 11 E77 W76 E E E E E E E E E E E E E E E E E E E | A large composite spot undergoing little change until July 5, after which it begins to diminish in area and becomes elongated. | | (βf) - N13 W35 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A stream of normal type, developing rapidly in a few days and then breaking up and dying outbefore reaching the limb. | | βf 14 N13 E40 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A group of small variable spots. | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A stream of three small regular spots, which die out as they approach the limb. | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | A large composite spot, developing rapidly from a tiny spot first seen on July 10. | | βf 18 N31 E09
βf 18 N31 E09 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A regular spot, of which the umbra is crossed by a bright bridge until July 19, after which the spot becomes composite and slowly diminishes. | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A group forming near the west limb immediately south of Group 18109, to which it finally becomes attached. | | βγ 29 s23 E04
βγ 19 s23 w 20
βρ 7 s23 w 65 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 18078 A regular spot with a number of variable companions. | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A stream of normal type, developing from a pair of small spots first seen on July 19. | | eta_γ 18 N10 E47 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A stream, led by a large composite spot which is the most stable member. A group forming near the west limb. | | | July 26 Aug. 6 E70 W64 J J J H H H H H H H J J αρ αρ βρ αρ βρ αρ 114 16 17 23 23 24 26 25 26 18 12 - | A regular spot, with some northern companions from August 2 onwards. | 2.2-4 (2 | | | | | POSITIO | ON DATA | | | T | | | | MAXIMU | M AREA | | | gr | NSD∩™ | MEAN | DAT | Δ ! | | | AAJ | |---------------|-----------------|--------------------|---------------------------------------|--------------|---------|-------|---------------|---|-------------------------------|-------|---------------|-------------|--------------|----------------|--------------------------|-------|-------|----------------------|-------------|----------------------------------|--|------------------------------|-------| | Serial
No. | Sunspo
MT.W. | t Number
Green. | Category | McM
Plage | Lat. | Long. | C.M.P. | All Spots
in Plage | Plage Serial
No. Table III | Umb | Whole
Spot | | ition | Gr.
Day | Flar | e | Area | | Wilso | n G | y Umb | Area | | | 73 | 12633 | 18219 | L | 4155 | S 23 | 83 | Sept.
19.4 | 12633
12630 | - | 84 | 567 | S 24 | W65 | Sept.
24.33 | | 35 | | | ℓ 1 | Τ | | Sp | ot | | 74 | 12634 | 18216 | 73, L, N
74 | f 4152 | N10 | 60 | 21,21 | 12623
12634 | 46 | 129 | 849 | N10 | W29 | 23.47 | +2
+2 | 91 | 519 | <i></i> βγ. | <u> </u> | Se 21 21 | ept. | 6 49
6 49 | 1 | | 75 | 12635 | 18217 | L, M | 4159 | N15 | 341 | 27.12 | 12640
12635
12636
12642 | 47 | 128 | 847 | N15 | E47 | 23.47 | | 96 | 608 | lβγ. | ' 25 | ; | | | | | 76 | 12636 | 18223 | 75
76 | 4159 | N20 | 338 | 27.42 | 12662
12644
12649
12652
12656 | | 47 | 264 | N19 | E52 | 23.47 | -3
-7 | 40 | 221 | lapl | 30 | 26 | 49
44 | | | | 77 | 12648 | 18229 | L | 4162 | N16 | 294 | 30.75 | 12648
12663
12673
12661 | 48 | 138 | 1333 | N16 | E44 | 27.36 | | 130 | 904 | IBPL | 30 | | | | | | 78 | 12654 | 18236 | L | 4165 | N27 | 269 | Oct.
02.62 | 12654 | 49 | 157 | 945 | N27 | W 10 | Oct.
03.48 | | 96 | 533 | IBp I | 25 | | | | | | 79 | 12659 | 18239 | L | 4167 | S 22 | 247 | 04.31 | 12659
12674
12668 | - | 137 | 612 | S 23 | E26 | 02.38 | | 122 | 547 | la pl | 32 | | | | | | 10 | 12665 | 18240 | L | 4175 | S16 | 225 | 05.94 | 12664
12665 | - | 76 | 666 | S14 | E70 | Sept.
30.65 | | 65 | 374 | $\ell\beta_P$ | 18 | | | | | | 1 | 12669 | 18247 | 77 | 4173 | S 40 | 194 | 08.33 | 12669 | 51 | 24 | 282 | S 41 | W15 | Oct.
09.52 | 0 | 22 | 142 | aβfa | 11 | Oct
09 | 24 | 282 | | | 2 | 12670
12676 | 18245 | L | 4172 | N13 | 203 | 07.60 | 12670
12679
12676
12680 | 50 | 96 | 628 | N13 | W25 | 09.52 | | 49 | 282 | da pd
d ßl | | | | | | | 3 | 12675 | 18252 | L | 4179 | N20 | 158 | 11.05 | 12675 | 52 | 171 | 964 | N20 | E33 | 08,46 | | 126 | 672 | lBpl | 28 | | | | | | ŀ | 12684 | 18258 | L . | 4185 | S17 | 104 | 15.11 | 12684 | 53 | 147 | 1042 | S18 1 | E22 | 13.38 | | 97 | 682 | lB pl | 16 | | | | | | | 12687 | 18260 | 78 . | 4186 | N10 | 10 | 16.41 | 12692
12687
12705
12695
12702 | 54 | 49 | 249 | N10 E | E 4 0 | 13.38 | 0 | 24 | 117 | dβd | 13 | 13 | 49 | 249 | Ι | | 1 | 2689 | 18262 | 79, L 4
80
81
82
83
84 | 1189 | S 24 | 70 | 17.70 | 12721
12689
12694
12696 | 55 | 454 2 | 480 | S24 F | E14 | 16.67 | 0
0
-3
-4
-5 | 845 2 | 074 | lßfl | | 16
16
19
20
21
23 | 454
454
330
399
366
216 | 2480
2074
2373
2023 | FFFFF | 2.4-6 # Continued) | ontin | | | | | | | | | ov D | 6646 | E DAT | `Δ | | | | | RETURN SEQUENCE | GREENWICH DESCRIPTION | |--------------------------------|----------------------|----------------------
--|---|------------------------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------------|-----------------------------|--------------------------|------------------------------|-------------------------|-----------------------|------------------------------------|---------------------|--| | ARE DAY | DAT | 'A | | | | | | | | | E DAT | | C1= :: | | | | Greenwich | | | Mag.
Class. | Н | Pos | ition | | | | | | | | Seen, 2 | Zurich
gth | Class | ··,
——— | | | and/or MT.W. | | | | | | | July 27
E74 | , | | | | | | | _ | | | | g. 8
V73
H | 18092, 18055 | A moderate-sized composite spot. | | | | | | - H
(X) d
- 1 | x | α | α | | Υ | Н
7
26 | Ε
Υ
28 | | Υ | н
а
21 | H
(a) | α (α)
-
Aug. 10 | 12449 | A stream of normal type, in which the leader is the most | | βρ • | 16 | N27 | W 50 | July 26
E81
-
(\alpha) \begin{align*} \int \text{-} \\ \i | 8
-
3 ₀
13 | Ε
βρ
19 | Ε
βρ
21 | Ε
βρ
19 | Ε
βΥ
21 | Ε
βγ
23 | Ε
βρ
24 | Ε
βγ
17 | Ε
βρ
18 | Ε
βρ
22 | Ε
βρ
16 | W80
Ε C
(βρ) (βρ) | | stable component. | | • | | | | ap 1 | A
3 | A - | | β | βf . | D
βf
14 | Aug.
W
C
(β) (| 88
- | | | | | | Intermittent. A tiny spot on August 10 and 11 (Mt. Wilson 12547). On August 14, a new group appears (Mt. Wilson 12554) and is growing as it passes from view. | | (β)
βΥ | -
22 | | E05
W20 | Aug. 1
E73
C | E | | E | E | Ε
(β) | E | E
βγ | Ε
βρ | G
βγ | $_{\beta_{\gamma}}^{G}$ | V73
G
βρ | | 12503 | A group of composite spots which soon develop into a stream of normal type. The rear component is dying out as the group reaches the limb. | | | | | | 14
Aug. 2
E75 | 17 | 19
C
β _P | 22
D
βρ | 26
D
βρ | D
βρ | 22
D
(βρ) | 22
D
βρ | 25
С
ВР | 17
C
βρ | 16
D
βf | ,
a | ot. 2
W78
(βf) | 12505 | A pair of small regular spots until August 26. On the next day more spots appear to form a stream which undergoes changes from day to day. | | Y
Y
Y | 18
18
21 | S 29
S 29
S 29 | | Aug. 2 | 15 | 16
E | 17
E | 16
E | 14
G | -
G | 14
G | 17
G | 12
G | 14
H | W
H | Н | 18137, 18092, 18055 | A composite spot, preceded by a few companions. By August 30, it has become regular in outline and alone remains by September 3. | | α
α | 25
24
24 | S 29
S 30
S 30 | E00 | | Y
18 | ,
(¹ / ₂) | 18 | 21 | 22 | 25 | (a)
- | 24 | 28 | 26 | (a.)
- | (a)
- | 12514, 12449 | | | βγ
βγ
βγ | 24
24
24
16 | | | Aug.
E82
-
(X) | E
βγ | E
(含 ₄) | Ε
βγ
22 | Ε
βγ
24 | Ε
βγ
24 | Ε
βγ
24 | F
(角) | F
βγ
19 | F
3) | F
β
20 | E (C) | Sept. 7
W79
Ε -
) (β) (x) | 18141 | A group consisting of three composite spots which gradually extend longitudinally. After September 4, it begins to diminish rapidly. | | βγ
(β)
βγ | 17 | N2: | W70
E01 | Aug.
E83 | | - | | | | | | F | F | F | Se
F | ept. 6
W79
E | | At first a small regular spot, which slowly changes into a composite spot. After August 30, there is a rapid increase in area. A composite structure, developing from a small spot first seen on August 26. By September 2, the leading portion is | | (βρ)
(βρ)
βρ | 19 | N1
N1
N1 | | (or) | D
β _ξ
22 | D
(βρ)
- | C
βρ
19 | C
βρ
19 | D
βρ
17 | Ε
βγ
17 | Ε
(β _Υ) | | β _Υ
21 | βγ
16 | | ·) (β) | | changing into a regular spot and is the sole survivor at the limb. A large stream which, although decreasing in area, undergoes | | βγ
(βγ)
βγ
(βγ) | 25
-
22
- | N1
N1
N1 | | Sept.
E88
-
X
15 | . 4
Ε
β _Γ
17 | Ε
βρ
17 | Ε
βγ
20 | Ε
βγ
26 | Ε
βγ
25 | Ε (β _Υ) | E
Ø 7
22 | E
(βγ | Ε
β _γ
19 | E
βհղ
14 | D
β-
12 | Sept. 1
W7
C
γ (X) (α | 7 | very little change throughout its passage. Two small regular spots, one at the rear and one in the centre of the group. retain their identity throughout. | | (β _Υ) | - | 14.1 | 1 422 | Sept
E31
B
Bf | . 4
С
В | E
βf | Ε
β
15 | Ε
β
21 | Ε
βρ
20 | Е
(Вр | E | t. 12
W65
E
(β) | | | | | | A stream, developing rapidly from a tiny spot. | | · | | | | 3
Sept
E44
Α
βρ | | 9
Ε
βγ | Ε
(βρ | Ε
, βγ | G
- (βρ | -
G
) βρ | J
αρ | Sept
J
ap | :. 16
W79
-
(ap) | | | | | A stream, growing rapidly from a small spot. The leader, which is composite structure, alone remains by September 14. | | (β) | - | s | 16 E13 | 13
Sep
E44
A
β | 17
t. 8 | 19
Ε
(β) | E
βρ | 19
E
(ββ | -
Ε
ρ) β | 15
G
β | G
βf | G
(ع) | -
t. 17
W75
G
(X |) | | | | A rapidly growing stream until September 13. On the next day the intermediate spots have disappeared, leaving two regular spots. | | (BY)
BY
BY
BY
(BY) | 3:
3:
3: | 5 N
5 N
5 N | 23 E28
23 E13
23 E13
23 E13
23 W01 | 2 | 14
t. 13 | Е
Вр | 25
Ε
βι | Ε (β | 26
F | 26
F
(岛- | 24
F | -
F
r βε | Fβ | F
(2 | Y F | | | A few small spots, rapidly growing into a large stream of normal type. The leader, a large regular spot, is the most stable component. The follower develops into a large composite spot by September 20, but begins to break up as the group approaches the limb. | | (β _Υ)
βρ | 1 | | 723 W01
710 E48 | Sej
E7
D
B | pt. 14
5
Ε
β _Ι | Ε
- β | | | ρ (β | | G
γ β
6 2- | y B. | γα | I
ρα | | 7
H
xp) | | A stream, in which the leader, a regular spot, becomes composite in structure by September 20. The following part breaks up and dies out by September 23. | 2.2-5 3 TABLE II 1957 | | | | | POSI | TION DA | ГА | | | | | | MUMIXAN | AREA | | | SUN | SPOT N | IEAN D | ATA | | | M. | AJOF | |---------------|----------------|------------------|--|---------------|---------|------------|-------------------------|---|-------------------------------|------------------|---------------|---------|-------------|-------------------------|---------------------------|----------|---------------------|-------------------|-----------------|---|--------------------------------------|---|--------------------------| | Serial
No. | Sunspot 1 | Number
Green. | Category | Mc M
Plage | Lat. | Long. | C.M.P. | All Spots
in Plage | Plage Serial
No. Table III | Umb. | Whole
Spot | Posit | tion | Gr.
Day | Flare
ΔT | | ea
Whole
Spot | Mt. W
Mag. | Vilson
Cl. H | Gr.
Day | Are
Umb. | ea
Whole
Spot | Zur
Cla | | 59 | 12514 | 18137 | L, M | 4082 | S 30 | 356 | Aug.
02.49 | 12514 | | 163 | 1092 | S 30 | W14 | Aug.
03,65 | | 126 | 845 | $l_{\gamma}l$ | 28 | | | | | | 60 | 12516 | 18141 | 42, L | 4083 | N26 | 331 | 04.42 | 12516 | 38 | 131 | 775 | N27 | W 50 | 08,32 | 0 | 102 | 629 | lβpl | 23 | Aug.
08 | 131 | 775 | E | | 61 | 12547
12554 | 18161 | L | 4093 | S14 | 231 | 11.98 | 12544
12534
12547
12554 | - | 31 |
683 | S15 | w75 | 17.53 | | 14 | 150 | dßd
dßfl | 2
13 | | | | | | 62 | 12563 | 18171 | 43, L
44 | 4112 | N17 | 99 | 21,95 | 12562
12563
12567
12582
12583 | 39 | 183 | 1113 | N17 | E16 | 20,62 | -1
-3 | 126 | 800 | lßpl | 26 | 21
23 | 140
167 | 918
902 | | | 63 | 12573 | 18177 | L | 4117 | S 24 | 30 | 27.21 | 12573 | - | 95 | 650 | S 25 | W52 | 31.40 | | 56 | 347 | l Bpl | 16 | | | | | | 64 | 12579 | 18181 | 45, L, M
46
48
50
55
56 | 4125 | S 29 | 335 | 31.33 | 12587
12588
12578
12579 | 41 | 171 | 807 | S 29 | E2 6 | 29.31 | +1
+1
0
-2
-4 | 101 | 601 | lyl | 28 | 28
28
29
31
Sept.
02
02 | 95
95
171
113
101
101 | 774
774
807
682
626 | E
E
G | | 65 | 12580 | 18182 | 47, L, M
49
51
58
59 | 4124 | N25 | 329 | 31.83 | 12585
12580 | 42 | 383 | 1726 | N25 | E33 | 29.31 | 0
-1
-2
-5
-8 | 210 | 1313 | Ιβγl | 23 | Aug
29
30
31
Sept
03
06 | 383
294
227 | | E
E | | 66 | 12581 | 18183
18185 | 52, L, M
53
54
57 | 1 4124 | | 333
326 | 31.50
Sept.
01.06 | 12581
12586
12590 | | 4 6
70 | | | W79
W02 | Sept.
06.32
01.28 | +6
+5
+5
+3 | 61
54 | 459
348 | lßy (| € 20 | Aug
31
Sep
01
01
03 | 62 | 497
497 | E | | 67 | 12596 | 18194 | 60, L, M
61
63
64
65 | 1 4134 | NII | 194 | 11.01 | 12614
12610
12596
12611 | 43 | 190 | 1365 | N11 | E61 | 06.32 | -3
-4
-5
-6 | 136 | 850 | lBy I | € 26 | 09
10
11
12
12 | 159
121
112
132
132 | 872
664
701 | E
E | | 68 | 12597 | 18191 | L | 4136 | S 24 | 249 | 06.84 | 12597 | - | 195 | 1635 | S 24 | w 60 | 11,42 | | 106 | 775 | 4B L | 20 | | | | | | 69 | 12601 | 18195 | L | 4138 | S 1: | 3 202 | 10.43 | 12601 | - | 99 | 676 | S13 | E00 | 10.46 | | 56 | 351 | dßpl | ! 18 | | | | | | 70 | 12606 | 18197 | 62, L | 4141 | S16 | 3 187 | 11.58 | 12606 | 44 | 216 | 1063 | S16 | w 25 | 13,42 | +3 | 129 | 715 | 4/3 L | 26 | 10 | 95 | 44 | 4 E | | 71 | 12622 | 18209 | 67, L, 1
68
69
70
71 | M 4151 | N2: | 3 85 | 19.30 | 12637
12632
12622 | 45 | 411 | 2214 | N24 | W13 | 20,36 | +2
+2
+2
+1 | | 1530 | dβγ. | £ 36 | 18
18
18 | 376
376
376
396 | 148:
5 199:
6 199:
6 199:
5 212 | 8 1
8 1
8 1
2 1 | | 72 | 12623 | 18211 | 72
66,L | 4152 | NO | 9 .76 | 19.98 | 12623
12634 | 46 | 182 | 2 1178 | N10 | E48 | 16,32 | +1 | 150 | 1020 | IB _P I | ? 30 | 19 | | 212 | | 22.5 # (Continued) | ₹ FLA | RE DAY | DATA | | | | | | | DISK | PASSA | GE D | АТА | | | | RETURN SEQUENCE | GREENWICH DESCRIPTION | |----------------|---------------------------------|--------------------------|--|--------------------------|---|---------------------------|----------------------|----------------------|------------------------|-------------------|-------------------------|-----------------------|----------------------|---------------------|--|---------------------------|--| | urich
lass | Mag.
Class. | н | Positio | on . | | | | | | itions
agnetic | | | h Cla | ss., | | Greenwich
and/or MT.W. | | | | | | | | Sept. 20
W14
A A
(X) βf | В
_{Вр}
18 | C
βρ
14 | D | . 25
V77
J | | | | | | | | A few growing spots. | | e 6 | βγ
βγ | 26
26 | N11 W
N11 W | | Sept. 19
E28
A B
- β
- 11 | Ε
β _Υ
26 | Ε
βγ
26 | Ε
βγ
31 | Ε
βγ
21 | G
βρ
15 | Sept.
V
G
(βρ) | 27
v85
-
(X) | | | | | A stream of rapid growth and decline. | | | | | | | Sept. 20
E85
- Ε
(X) βγ
- 12 | Ε
βρ
20 | Ε
βγ
20 | Ε
βρ
24 | Ε
βγ
24 | Ε
βf
25 | Е
Вр
35 | Ε
(βf) | Ε
(βf) | Ε
(βf)
20 | Oct. 3
W80
Ε D C
βγ βγ (βf)
15 | | A stream of normal type, in which the rear component becomes a large composite spot which is the first to die out. | | | α <i>ρ</i>
α <i>ρ</i> | 25
16 | N20 E
N20 W | | Sept. 21
E77
J J
αρ βρ
12 23 | C
βρ
25 | J
αρ
27 | J
∝p
24 | C
ap
25 | C
ap
30 | C
(ap) | C
(ap) | C
«p
16 | C
ap
17 | Oct. 3
W79
C C
α _p ' -
14 - | . 12581 | A stable regular spot, with occasional companions. | | and the second | | | | | Sept. 24
E83
- Η
(X) βρ
- 22 | Η
<i>βρ</i>
30 | Ε
βρ
25 | Ε
(βρ) | Ε
(β _P) | Ε
βρ
27 | Ε
βρ
26 | Ε
βρ
25 | H
-
- | Η
αρ
15 | Oct. 6
W75
H H
op (ap)
15 - | | A large composite spot which slowly becomes elongated as its area diminishes. | | | | | | | Sept. 27
E71
B D
βρ (βρ)
13 - | D
(βρ) | D
βρ
22 | E
βρ
19 | E
ခိုင္င | G
- | G
βρ
23 | G
βρ
25 | G
βρ
24 | | et. 8
W78
H
(ap) | | A stream in which the leader, a large regular spot, is the only stable component. | | a management a | م | | | | Sept. 28
E76
H H
(αρ) (αρ) | н
ар
2 6 | н
30 | H
∝ρ
28 | H
-
- | н
∝р
29 | н
ар
32 | Н
ор
28 | Η
αρ
24 | Η
ορ
17 | Oct. 10
W80
H H
(ap) (ap) | 18191 | A stable regular spot, with a small companion from September 30 to October 4. | | | | | | | Sept. 29
E80
- J
(α) βρ
- 16 | C
βρ
19 | С
Вр
18 | C - | C
β
10 | D | C
βρ
14 | C
βρ | С
Вр | С
<i>Вр</i>
5 | Oct. 11
W71
B A | | A stream, led by a regular spot until October 3; after this the whole breaks up before reaching the limb. | | | βf | 4 | S41 W | V15 | Oct. 2
E72
- Β
(β) - | С
Вр
5 | Β
βf
9 | С
Вf
12 | C
Bf | C
βf | С | Β
(βf) | B
- | Oct | t. 13
W61
B | | A few small spots which coalesce into an elongated structure for a day or two and then break up again and die out. | | | | | | | Oct. 1
E76
- Α
(α) (αρ) | A - | В
ар
5 | А
ар
3 | Β
βρ
12 | D
βf
13 | E
Af | Ε
βf
17 | Ε
(β) | E
- | Oct. 13
W77
E D
βp -
13 - | 18192, 18156 | A small spot until October 5 (Mt. Wilson 12670). On the next day other spots appear (Mt. Wilson 12676) to form a group consisting of two fair-sized composite spots. | | | | | | | Oct. 5
E74
C D
Bf B
8 16 | Ε
βρ
21 | Ε
βρ
21 | Ε
βρ
28 | Ε
(βρ) | E - | Е
<i>Вр</i>
24 | G
- | G
(βρ) | | t. 16
W61
G | | A stream of normal type, in which the leader is a stable regular spot and the follower a composite spot. The latter is slowly dying out as it approaches the limb. | | | | | | | Oct. 9
E74
B C
β (β _P) | E
-
- | Ε
βγ
17 | E
- | Ε
(βρ) | Ε
(βρ) | Ε
βρ
16 | Ε
βρ
14 | Ε
βρ
13 | | t. 20
W69
C
- | | A stream, led by a regular spot. After October 12, intermediate spots join up with leader and follower to form a composite structure. After October 17, the group begins to die out. | | | - | - | N10 E | 40 | Oct. 10
E76
B B
(X) - | C
βf
8 | D
- | С
(β) | C
(βf) | C
~
14 | B
(X) | Oct. | | | | 18211 | A group of small unstable spots. | | | βf
βf
βf
-
-
βf) | 29
29
27
-
- | S24 E
S24 E
S24 W
S24 W
S24 W
S24 W | :14
/22
/35
/49 | Oct. 10
E82
- E
(X) - | Ε
βρ
15 | F
-
- | F
(<i>β</i> f) | F
(βf) | F
βf
29 | F
βf
24 | F
βf
27 | F
βf
27 | F
-
- | Oct. 2 W8 F E E - (βf) (βf) (3 | <u>-</u> | A stream, in which the intermediate and follower spot after October 14 join together to form a large composite spot, while the leader slowly dies out. | | | | | | | | | <u> </u> | | | | | | | | | | | 21-6 # TABLE II 1957 (| | | | | POSIT | ION DAT | Α | | | | | M | MAXIMUM AREA | | | SUNS | POT N | MEAN DA | ГА | | | MAJ | OR I | |---------------|-----------|------------------|----------------------|--------------|---------|-------|---------------|---|-------------------------------|------|---------------|-----------------|---------------|----------------|-------------|---------------------|--------------|---------|------------------------|-----------------|--------------|--------------| | Serial
No. | Sunspot : | Number
Green. | Category | McM
Plage | Lat. [| ong. | C.M.P. | All Spots
in Plage | Plage Serial
No. Table III | Umb, | Whole
Spot | Position | Gr.
Day | Flare | Ard
Umb. | ea
Whole
Spot | Mt. Wils | on
H | Gr.
Day U | Area
Imb. Wh | Zu
note C | rich
lass | | 87 | 12698 | 18269 | L | 4188 | N26 | 68 | Oct.
17.84 | 12685
12688
12698 | - | 101 | 695 | N27 W73 | Oct.
23.45 | | 33 | 199 | dßl | 13 | | | | | | 88 | 12716 | 18283 | L | 4197 | N13 | 323 | 25.78 | 12707
12722
12710
12716
12735 | 56 | 73 | 584 | N13 W58 | 29.42 | | 39 | 253 | βpl | 16 | | | | | | 89 | 12717 | 18284 | L | 4201 | S 22 | 322 | 25.89 | 12717
12724
12736 | <u>-</u> | 111 | 774 | S 23 E 75 | 20.42 | | 60 | 393 | lßpl | 15 | | | | | | 90 | 12718 | 18287 | 85,L | 4203 | S 12 | 301 | 27,50 | 12718
12728 | 57 | 84 | 703 | S12 W25 | 29.42 | | 75 | 510 | lßpl | 17 | Oct.
27 | 81 | 590 | G | | 91 | 12730 | 18299 | L | 4207 | S 15 | 243 | 31.86 | 12752
12730 | 58 | 87 | 523 | S15 E59 | 27.45 | | 51 | 342 | l B fd | 17 | | | | | | 92 | 12732 | 18300 | 86, L, M
87
88 | 4207 | S 24 | 240 | Nov.
01.12 | 12732
12734 | | 177 | 1181 | S 27 E35 | 29.42 | -4
-7
-8 | 106 | 765 | lyl | 20 |
Nov.
02
05
06 | 59 | | H
H
B | | 93 | 12733 | 18292 | Ĺ | 4202 | N21 | 298 | Oct.
27.67 | 12725
12733
12719
12720 | - | 185 | 1404 | N21 W22 | 29.42 | | 102 | 654 | dßpl | 22 | | | | | | 94 | 12738 | 18304 | L | 4208 | N26 | 241 | Nov.
01.02 | 12729
12738 | - | 179 | 904 | N25 W45 | Nov.
04.46 | | 94 | 543 | dß £ | 8 | | | | | | 95 | 12745 | 18312 | L | 4218 | S17 | 173 | 06.18 | 12744
12745
12749 | 59 | 68 | 758 | S17 W71 | 11.53 | 3 | 80 | 549 | lßpl | 16 | | | | | | 96 | 12763 | 18326 | 90, L
91 | 4230 | N19 | 89 | 12.56 | 12762
12772
12763 | 60 | 93 | 804 | N20 E80 | 06.3 | 5 -7
-9 | 41 | 290 | lel | 16 | 13
15 | 31
24 | 226
145 | J
C | | 97 | 12767 | 18333 | L | 4233 | М08 | 72 | 13.88 | 12767
12775 | - | 194 | 1149 | N08 W46 | 18.3 | 6 | 76 | 472 | JBl | 19 | | | | | | 98 | 12768 | 18327 | 89 | 4237 | S 22 | 59 | 14,81 | 12776
12773
12768 | 61 | 31 | 310 | S 23 E 57 | 10.5 | 1 0 | 22 | 181 | lad | 10 | 10 | 31 | 310 | н | | 99 | 12774 | 18332 | L | 4236 | S 20 | 84 | 12.97 | 12774 | - | 100 | 593 | S19 W18 | 14.3 | 10 | 66 | 410 | 6 d/3ℓ | 21 | | | | | | 100 | 12792 | 18354 | L | 4245 | S 26 | 13 | 18.3 | 12792 | - | 85 | 526 | S 26 W 65 | 23.4 | 10 | 58 | 32 | 4 d×l | (10) | | | | | | 101 | 12779 | 18338 | 92, L | 4246 | N2 | 8 353 | 19,82 | 12779
12790 | | 87 | 706 | N27 W47 | 23.4 | 40 (| 5€ | 38 | 1 lßpl | · 18 | 23 | 87 | 706 | E | | | | | <u>.</u> | | · | | | | | | | | | _ | | | | | | | | | 2.11-7 2. [# 57 (Continued) | AJOR FI | ARE DA | YDAT | `A | DISK PASSAGE DATA | RETURN SEQUENCE | GREENWICH DESCRIPTION | |------------------|--------------------|----------------|---|--|---------------------------|--| | | Mag.
Class. | | Position | Days Seen, Positions Seen, Zurich Class.,
Mag. Class., Magnetic Strength | Greenwich
and/or MT.W. | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | A stream, in which the leader is the only stable member. | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 18308 | A regular spot, with a few close companions from
November 22. | | G | (α ρ) | - | S15 E28 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | A regular spot followed by some small variable spots. | | E | (β)
β f | 22 | S19 W40
S18 W50 | Nov. 25 Dec. 5 E60 W77 B C C D E E E E E E E $\beta \rho$ $\delta δ | | A bi-polar group, developing from a few small spots first
seen on November 25. By December I, the leader has be-
come a large composite spot and alone remains at the west
limb. | | E | - | - | S17 W28 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 18312
12749
12745 | A large composite spot followed by a few small companions. On December 1, it begins to break up and the leading nucleus becomes a stable regular spot. | | | | | | Nov. 28 Dec. 6 E31 W77 A C D D D E E D D - βρ (βρ) (βρ) (βρ) βρ (βρ) - 12 18 | | A bi-polar group, in which the leader is the most stable member. | | В | - | - | N17 W31 | Dec. 3 Dec. 7 W32 W79 A C D D - β (β) (αf) | 18332 | A small group, forming near the west limb. A stream of small changing spots. | | | | | Not Seen | 7 - 9 9 - 3 Dec. 6 Dec. 10 E64 E11 A B A B B βρ (β) - (β) - 6 | | One or two small spots. | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | A stable regular spot, followed by a composite spot which is slowly diminishing during transit. | | E
E
E
E | -
Y
Y
(Y) | 23
23
23 | N19 E77
N18 E50
N17 E21
N17 E21
N17 E08 | Dec. 14 E77 E E E E E E E E E E E G G 18 23 - 21 18 16 18 10 | | A large cluster of spots, in which the rear portion becomes a large composite spot while the leading nuclei diminish and become two small regulars. | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | A long stream, in which the leader, a regular spot, is the only survivor by December 25. | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | A composite spot, followed by a few small companions until December 20. On the next day the group consists of two composite spots which are joined together for a day or two and then begin to separate and die out. | | F | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | A composite spot, followed by a small fairly stable regular spot. | | Е | β <i>p</i> | 23 | N23 E44 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | A stream of normal type. | | | | | | POSITIO | ON DATA | | | | | | N | MAXIMUM ARE | A | | SUNS | POT M | EAN D | ATA | | | | |---------------|-----------|------------------|--------------------------------------|---------------------------|---------|-------|---------------|----------------------------------|-------------------------------|------|---------------|-------------|-----------------|-------------------------|------------|---------------|-----------------|----------------|----------------------|-------------------------|--------------------------| |
Serial
No. | Sunspot : | Number
Green. | Category | M ^C M
Plage | Lat. | Long, | C.M.P. | | Plage Serial
No. Table III | Umb. | Whole
Spot | Position | Gr.
Day | Flare
² T | A:
Umb. | whole
Spot | Mt. W
Mag. (| ilson
Cl. H | Gr.
Day | | Area
. Wi
S | | 102 | 12781 | 18345 | L | 4247 | N17 | | Nov.
21.04 | 12780
12781 | 63 | 127 | 500 | N17 W31 | Nov.
23,40 | | 47 | 270 | - Apl | 20 | | | | | 103 | 12784 | 18349 | L | 4257 | S13 | 276 | 25.72 | 12784 | - | 112 | 511 | S13 E42 | 22.50 | ļ | 69 | 386 | lbfl. | 21 | | | | | 104 | 12788 | 18353 | 93. L | 4263 | S 15 | 263 | 26.70 | 12787
12788
12796 | 65 | 86 | 551 | S15 W24 | 28.57 | +4 | 66 | 398 | lspl | 21 | Nov
24 | . 79 | 3 | | 105 | 12800 | 18357 | 95, L
96 | 4269 | S18 | 222 | 29.79 | 12800
12810 | 66 | 319 | 1644 | S18 W60 | Dec.
04.44 | +2
+1 | 140 | 858 | dßpl | 21 | Dec
02
03 | 198
290 | 14
13 | | 106 | 12808 | 18361 | 97, L, M | 4288 | S17 | 176 | Dec.
03.30 | 12808
12815
12827
12828 | 67 | 147 | 1295 | S18 E52 | Nov.
29.43 | -6 | 106 | 856 | lyl | 20 | 05 | 55 | 5 | | 107 | 12814 | 18365 | L | 4271 | N15 | 210 | Nov.
30.67 | 12823
12805
12814 | - | 68 | 580 | N15 W64 | Dec.
05,52 | | 62 | 399 | dßpl | 17 | | | | | 108 | 12830 | 18374 | L | 4293 | S 13 | 205 | Dec.
01.00 | 12830 | - | 49 | 502 | S14 W71 | 06.42 | | 25 | 216 | dpl | (15) | | | | | 109 | 12832 | 18377 | 99 | 4295 | N18 | 89 | 09.87 | 12832 | 69 | 23 | 151 | N18 E56 | 05.52 | -7 | 14 | 81 | lpd | 9 | 12 | | 1 | | 110 | 12840 | 18385 | 98 | 4301 | S 34 | 70 | 11.30 | 12840 | 70 | 6 | 51 | S34 E52 | 07.29 | | 4 | 26 | ₿d | 5 | 12 | | | | 111 | 12851 | 18395 | L | 4313 | S 15 | 329 | 19.00 | 12851
12861
12862 | 72 | 178 | 979 | S15 E34 | 16.40 | | 139 | 828 | lppl | 36 | | | | | 112 | 12855 | 18398 | 100, L,M
101
102
103
104 | 4314 | N18 | 313 | 20.20 | 12855
12863 | 73 | 171 | 1434 | N17 E08 | 19.40 | +5
+3
+1
+1 | 128 | 939 | lpyl | 22 | 14
16
18
18 | 53
193
180
180 | 3 1
3 1
3 1
1 1 | | 113 | 12865 | 18400 | L | 4316 | N23 | 299 | 21,39 | 12865 | - | 95 | 581 | N23 E51 | 17.39 | | 49 | 269 | lspl | 22 | | • | | | 114 | 12868 | 18401 | L | 4317 | N15 | 279 | 22.76 | 12868
12867
12866 | - | 77 | 724 | N15 W0 | 7 23.28 | | 67 | 456 | lapl | 22 | 2 | • | | | 115 | 12869 | 18407 | Ĺ. | 4319 | S 26 | 257 | 24.42 | 12870
12869
12890 | 74 | 127 | 933 | S 25 E 26 | 5 22.3 0 |) | 81 | 636 | I is R | 21 | | | | | 116 | 12874 | 18408 | 105, L | 4321 | N23 | 255 | 24.58 | 12877 | 75 | 175 | 1507 | N23 W3 | 5 27.28 | +6 | 170 | 1170 | lspl | 27 | 21 | 18 | 0 1 | ### ontinued) | ARE DA | AY DA | TA | | | | | | DISK | PASS | AGE | DATA | | | | RETURN SEQUENCE | GREENWICH DESCRIPTION | |-----------------|-------|------|-------------------|--|------------------------|--------------------------------|----------------------|---------------------------------|---------------------------|--------------------|-----------------------|------------------|---------------------------------|---|---------------------------|---| | Mag.
Class. | н | Pos | ition | | | | | en, Pos | | | | | lass., | | Greenwich
and/or MT.W. | | | | | | | Oct. 13
E60
A A
- (X) | C
(B) | С
<i>Вр</i>
3 | C
βf
11 | С
Вр
14 | C
βρ
13 | p
-
- | D
- | D
ßf | Oct.
V
D
Bf | 24
v86
-
X | | A stream of small spots until October 20, after which the group grows fairly rapidly as it approaches the limb. | | | • | | | Oct. 20
E74
B B | С
(д) | D
βf
11 | D
₿γ
8 | D
(A) (| С
Вр) | Ε
(βρ) | Ε
(βρ) | D
βρ
17 | Oct.
V
C
(βρ) | 31
v78
C | | A stream of small changing spots until October 26, after which the group consists of two composite spots. | | | • | | | Oct. 20
E79
C D | D
(A) | Ε
β
15 | Ε
<i>βρ</i>
13 | D
(A) | D
(β) | D
(β) | D
(β) | D
αρ
15 | Oct.
D
(αρ) | . 31
W78
B | | A group of spots which join together to form a composite spot on October 24 but which soon breaks up again. | | (βρ) | - | S12 | W02 | Oct. 22
E66
G G
(\(\beta_P\)) \(\beta_P\)
- 17 | G
βρ
19 | G
(β _P) | G
(βρ) | G
(පි _ව) | Ε
(β _P) | Η
βρ
18 | H
(X) | H
-
- | ον. 1
W67
H
(αρ) | | | A composite spot, with one or two small companions. | | | | | | Oct. 25
E78
- D
(β _P) (β) | Ε
(βf) | Ε
(βf)
- | Ε
βf
16 | G
(βf) | G
- | G
(βf) | G
- | G
- | G
(β _P) | Nov. 6
W70
G B
(βρ) _ | | A stream in which the follower, a regular spot, is the most stable member. This, however, begins to break up on November 2 into a number of small spots before dying out. | | -
(Y)
(Y) | - | | W15
W55
W68 | Oct. 25
E81
- E
(X) (X) | E
(X) | E
(X) | E
Y
21 | G
(∼) | G
- | G
(<u>Y</u>) | H
-
- | H
-
- | н
(<u>~</u>) | Nov. 6
W66
Η Β
(γ) (γ) | 18239, 18191 | A large composite spot, which by November 3 begins to break up and is dying out as it passes from view. | | | | | | Oct. 26
E22
B D | Ε
(β _P) | Ε
βρ
22 | Ε
(βρ) | E
- | G
(βρ) | Nov
V
G
- | 7. 3
V85
-
- | | | | | Intermittent. A tiny spot on October 23. On October 26, a pair of small spots appear which grow rapidly into a bi-polar group. | | | | | | Oct. 28
E48
A B
(\beta) \beta f
- 9 | D
(βf) | E | Ε
(βρ) | E | E
- | Ε
(β) | Ε
(βρ) | | ov. 7
W78
-
(a) | | | A stream undergoing minor changes. | | | | | | Oct. 30
E81
- D
(X) - | Ε
(βρ) | E
- | E
- | G
(βρ) | G
(βρ) | G
βρ
3 | G
αρ
17 | G
∝ρ
14 | G
αρ
13 | Nov. 11
W63
G G
ap (ap)
8 - | | A stream in which both the leader and follower become regular spots and alone remain by November 7. On November 9, the follower begins to change into a composite spot. | | - | : | | W07
W36 | Nov. 6
E80
- Η
βρ βf
11 13 | Н
β
15 | Η
βγ
15 | Η
β
17 | D
お
16 | C 2 | C
- | J
-
- | J
-
- | J
βf
4 | Nov. 18
W70
J A
βf (αf)
2 | | A stream of normal type. Only the leader and follower remain by November 15. | | | | | | Nov. 10
E46
A B
$\beta \rho$ $\beta \rho$
4 2 | Β
(β _P) | D
- | D
- | E
~ | Ε
β _Υ
15 | Ε
βγ
20 | Ε
β
16 | Е | 7. 20
W81
-
(\alpha f) | | | A small spot until November 12. On the next day other spots appear and these rapidly develop into a bi-polar group. | | α | 6 | S 23 | E57 | Nov. 8
E79
- H
(X) a | н
∝
7 | G
a
6 | G
a
11 | H
- | В | B - | Nov. | . 17
W37
A | | | 18262, 18219 | A composite spot, which breaks up and dies out rapidly after November 13. | | | | | | Nov. 9
E47
A B
- βγ
- 11 | Ε
βf
18 | Ε
βf
19 | E | E
- | E
- | D | Nov | ₩76
J | | | 12689. 12633 | A stream of rapid growth until November 12. The leader, a regular spot, is the only survivor by November 17. | | | | | | Nov. 21
W43
A C | Nov. | | | | | | • | - | | | | A small group forming near the west limb. | | (B) | - | N27 | W47 | Nov. 14
E72
J J | -
Ј
¤р
19 | -
J
β _P
18 | ς
β _Υ | С
<i>В_Р</i>
13 | D
βρ
15 | Ε
(β) | Ε
(β) | Ε
(β) | C | . 25
W76
C
(a,p) | | A regular spot until November 16, after which other spots appear to form a cluster. | | | Ā | _ | | <u> </u> | | | | | | | | | | | | -l | | | | | | POSI | TION DA | TA | | | | | M | IAXIMU | M AREA | | |---------------|------------------|------------------|----------|--------------|---------|-------|---------------|---|-------------------------------|------|---------------|--------|--------|---------------| | Serial
No. | Sunspot
MT.W. | Number
Green. | Category | McM
Plage | Lat. | Long. | C.M.P. | All Spots
in Plage | Plage Serial
No. Table III | Umb. | Whole
Spot | Posi | tion | Gr.
Day | | 117 | 12878 | 18411 | L | 4328 | N26 | 240 | Dec.
25.70 | 12898
12878 | 76 | 181 | 1024 | N26 | E57 | Dec.
21,29 | | 118 | 12882 | 18413 | L | 4323 | S19 | 227 | 26.76 | 12906
12892
12882
12884
12886 | 77 | 84 | 591 | S 20 | W28 | 24.50 | | 119 | 12894 | 18419 | L | 4315 | S05 | 309 | 20.50 | 12894
12873
12864 | - | 118 | 829 | S06 | W75 | 26,26 | | 120 | 12885 | 18415 | L | 4325 | N14 | 218 | 27.45 | 12885 | - | 87 | 540 | N15 | E67 | 22.30 | # ZURICH CLASSIFICATION OF SU | | 1 | | | | |----|---------------------|----------------------|----------------------
---| | Α. | 12235
MAR. 29 | 17 ; 12245
APR. 4 | 12315
MAY 2 | :·* | | B. | 12235
MAR 30 | 12122
FEB. 4 | 12144
FEB. 13 | ý. T | | c, | 12285
APR 24 | 12297
APR. 30 | 12407
JUNE 15 | D | | D. | 12159
MAR. 4 | Q 12297
APR. 24 | 12407
JUNE 18 | 125
AU | | E. | 12159
FEB. 26 | 12855
DEC. 18 | 12808
NOV. 29 | | | F. | 12689
OCT. 16 | 12622
SEPT. 18 | 12426
JUNE 21 | SON BEAUTY OF THE PROPERTY | | G. | 12443
JULY 4 | 12353
MAY 29 | 12373
JUNE 7 | Ø, | | Н. | 12089
JAN: 21 | 12353
MAY 27 | 123/3
JUNE 10 | S. S. S. | | J. | . P 12285
APR 26 | 12779
NOV. 17 | (2) 12415
JUNE 19 | () | 2.4-90 #### TABLE II 1957 (Continued) | | | | | | | | - : | JOD EX | ADEDA | 17 D 4 7 | | - $ -$ | | | | | 1 | DISK | PASSA | GE | |-----------|---------------|------|------------------|------|------------|------------|-----|--------|----------------|----------|----------|---------|------------------------------|---------------------|-----------------------|----------------|----------------|----------------|--------------------|-------------| | | SUNSP | OT M | EAN DA | TA | | | MA | JOR FL | ARE DA | YDAI | Α | -+ | | | | | | | | | | are
ΔT | Are
Umb, W | | Mt. Wi
Mag. C | | Gr.
Day | Ar
Umb. | | Class | Mag.
Class. | н | Position | | | | | Days
Mag | Seen,
Class | Posi
s., Ma | tions S
gnetic | Seer
Str | | | 128 | 862 | lß pl | 29 | | | | | | | | | Dec.
E78
-
(X) | 19
E
15 | E
∂ <i>P</i>
21 | Ε
βρ
24 | Ε
βρ
29 | Ε
βρ
18 | Ε
(β ρ) | Ε
(β) | | | 55 | 392 | l p l | 14 | | | | | | | | | Dec.
E85
-
(X) | 20
c
~p
15 | C
~ <i>P</i>
13 | . Е
Ү
18 | Ε
β
12 | Ε
(β) | Ε
(β) | E (p | | | 82 | 518 | d B A | (15) | | | | | | | | | Dec.
W54
J
βρ
6 | | Dec. 2
W75
D | 6 | | | | | | | 69 | 414 | la p1 | 29 | | | | | | | | | Dec.
E81
-
00
22 | 21
H
26 | Н
э ор
5 29 | н
• р
14 | Η
(ορ) | Η
(ορ)
- | Η
(ορ)
- | 1 | | | | | | | | | | | | | | | ορ
22 | 26 | 29 | ு p
14 | (op)
- | (op)
- | (op) | | # NSPOTS 417 INE 20 | 12368
MAY 30 | systematic structure of the group. The spots are without penumora. | |-----------------|--| | 2225
AAR. 27 | A bipolar group of spots without penumbra, the long axis of which is directed roughly E-W, concentration of spots on the E & W ends. | Sunspot composed of a small single spot or a very small group of spots, mostly of short duration, concentrated in a region of 2-3 Sq. Deg. with no Bipolar group, the largest spots having penumbra. Very large bipolar or complex group. Dimension in longitude at least $15\,^\circ$. Large bipolar group, without small spots between the two major spots. Dimension in longitude at least $10^\circ\!.$ Unipolar spot with penumbra, sometimes with complicated structure. Diameter > 2.5°. Umipolar spot with penumbra, round shape, Diameter $< 2.5^{\circ}$. Large bipolar group showing a complicated structure. The two major spots each having a penumbra. Numerous small spots between the major spots. Group at least 10° distance in longitude. Bipolar group like B but with at least one main spot with penumbra. 2. П -9 | DAT | ГΑ | | | | | RETURN SEQUENCE | GREENWICH DESCRIPTION | |----------------|---------------------|----------------|----------------|---------|-----------------------|------------------------|---| | i, Zu
rengt | | Clas | s., | | | Greenwich and/or MT.W. | | | 2) (c | G
> ρ) | G
0,0
18 | н
° р
12 | De
H | | | A composite spot, followed by some variable companions. | | l) (| D
β
12 | D
β
6 | J:
D
(β) | В | (β) | 18357 | A large composite spot which begins to break up by December 28 and is dying out as it passes from view. | | | 12 | Ū | - | - | - | 12000 | A group forming near the west limb. | | Ŧ : | н | н | н | J | Jan. 2
W78 | 18365 | A regular spot, of which the umbra divides into three parts for a few days. | | P | ρ
10 | (α ρ) | | | ο) (α ρ)
- | 12814 | | #### **ILSON MAGNETIC CLASSIFICATION OF SUNSPOTS** #### I. UNIPOLAR SPOTS - The flocculi is farily symmetrically distributed on the preceding and following sides of the center of the group. - $\alpha\rho$ The center of the group precedes that of the surrounding flocculi. - $\propto \hat{f}$ The center of the group follows that of the surrounding #### II. BIPOLAR SPOTS - eta Both members are of approximately equal area. - $\beta \rho$ The header is the principal member. - βf The trailer is the principal member. - βy The trailer and header are accompanied by small components of opposite polarities. #### III. Multipolar spots Jerregularly arranged spots of opposite polarities which cannot be classified as bipolar spots. #### TABLE III. CATALOGUE OF PLAGE DATA FOR 1957 The data in this catalogue include plage regions associated with major solar flares, plages with a cental meridian passage area equal to or greater than 10,000 millionths of the solar hemisphere, plages with an average brightness equal to or greater than 3.5 during disk passage, and plages where 30 or more flares of all importance equal to or greater than 1, during disk passage. The categories are indicated in column 4 by the sumbols L = large, B = bright, and N = 30 or more flares. These data were obtained from the McMath-Hulbert unpublished plage catalogue. (Ref. 13) - Column 1 Catalogue Serial Number. - Column 2 McMath Plage Number. - Column 3 The Major Flare or Flares Serial Numbers and/or Plage Category. - Column 4 Mean Longitude During Disk Passage. - Column 5 Mean Latitude During Disk Passage. - Column 6 Greenwich Date of Central Meridian Passage. - Column 7 Life in Rotations. - Column 8 Date First Seen. - Column 9 Number of Days Seen. - Column 10 Average Maximum Area. - Column 11 Intensity. Three regions are used, E/C/W, where: - $E = E90^{\circ}$ to $E45^{\circ}$ - $C = E45^{\circ} \text{ to } W45^{\circ}$ $W = W45^{\circ} \text{ to } W90^{\circ}$ The intensity is estimated on a scale of 1 = faint to 5 = very bright. - Column 12 Number of Flares During Disk Passage E/C/W - $E = E90^{\circ}$ to $E45^{\circ}$ - $C = E45^{\circ} \text{ to } W45^{\circ}$ - $W = W45^{\circ} \text{ to } W90^{\circ}$ - Column 13 Total Number of Flares During Disk Passage. - Column 14 Life Histories. If the plage region is the return of a plage or plages from the previous rotation or rotations, the McMath plage numbers are given in the return sequence. #### ASSOCIATED SUNSPOTS - COLUMNS 15-18 - $\frac{\texttt{Column 15}}{\texttt{Plage}} \; \underbrace{\texttt{Mt. Wilson Sunspot Numbers of All Spots Covered by the}}_{\texttt{Plage}}$ - Column 16 Mt. Wilson Mean Magnetic Classification of the Spots - Column 17 Field Strength in Units of 100 gauss. A bracket indicates an estimated value. - Column 18 Days Seen. | | | | | | | | | , | | | | | | | | | | | | | | |-------------------------|----------------------------------|-----------------|---|----------------|-------------------|----------------|-------------------------|---|-----------|----------------------------------|------------------------------|-------------------------|------------|-------------|-------------------------|-------------|------------------------|-----------|---|-------------------|-------------------| | S | , Days
s Seen | May 5-17
6-6 | 13-22
13-17
21-21
13-24 |
19-29
24-31 | June 26-7
30-8 | 15-15
7-20 | 11-19
12-20
17-24 | 12-19
13-24
13-25 | 14-28 | 15-27
15-29 | 18-1
25-26 | 24-2
24-6
27-28 | 26-8 | 28-11 | 30-9
28-10
29-11 | July 1-12 | 4-15 | 10-20 | 15-22
16-25
12-27
14-24
15-28 | 31-31
19-1 | 21-22
17-28 | | SUNSPOT | Intensity
100 Gauss | 30 | 23
7
13 | 18 | 23 | 23 | 111
9
71 | 4
13
26 | 27 | 39 | 37 | 35 | 33 | 35 | 17
21
19 | 13 | 56 | 25 | 2 4 0 1 3 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 | (1)
26 | 29 | | ASSOCIATED SUNSPOTS | Mag.
Class | RBy R
dapd | lapt
dxd
dxd
lapt | d Bpd
dBl | lapl | dafd | 120
190
198 | 1 Bd
18 pl | 181 | lapl | LAPL | 100
Lapl | IBAR | lyl | dbl
Lope
Lbfl | PFGY | PBJ | dyl | dad
Rape
Rape
Rape
Apped
Apped | dad | dxd
18pl | | A. | No. Wil.
No. | 12324
12326 | 12330
12331
12351
12332 | 12347
12356 | 12360
12368 | 12411
12387 | 12397
12402
12420 | 12403
12406
12407 | 12409 | 12415
12417 | 12426
12435 | 12433
12434
12445 | 12443 | 12449 | 12453
12447
12451 | 12456 | 12462 | 12473 | 12489
12494
12481
12487
12491 | 12520
12503 | 12507
12496 | | LIFE HISTORY | Plage No.'s Previous Rotations | 3932 | Part of 3940 Part of 3847 - 3861
Part New Part New | 3966 | New | New | 3964 | 3984 3947* 3907 (See No. 12) *Old and dying plage has a resurgence at WLP | 3986 | 3989
3991 In position of 3958 | 3983 New in position of 3962 | 4001 | New | Mostly new | 3999 3974 3932 | New | 4009,3979 (See No. 18) | | 4023 4987 (See No. 19)
4024 (See No. 25)
4028 4000
4029 Part of 3991 in position of 3958 | 4039 (See No. 27) | 4030 (See No. 26) | | | Total
Flares | 41 | 22 | 35 | 36 | 17 | 56 | | 53 | 64 | 88 | 43 | 20 | 56 | 61 | 16 | 4 | 14 | 47 | 54 | 31 | | DATA | No. Flares
E/C/W | 4/34/3 | 4/14/4 | 5/6/24 | 2/24/10 | 5/11/1 | 5/22/1 | 4/3/0 | 25/26/2 | 9/38/17 | 8/10/10 | 10/33/0 | 1/11/2 | 11/10/5 | 5/33/23 | 7/8/1 | 1/3/0 | -/13/1 | 13/49/12 | 15/18/21 | 1/20/10 | | DISK PASSAGE PLAGE DATA | Intensity No
E/C/W I | 3.5/3.5/4 | 3.5/3.5/2.5 | x/3/3 | 3/3/2.5 | 3.5/3.5/3 | 3/2.5/2.5 | 3/3/2 | 3.5/3/3.5 | 3.5/3.5/3.5 | 3.5/3.5/3.5 | 4/4/3 | 4/3.5/3 | 3.5/3.5/3.5 | 3.5/3/3 | 3.5/3.5/3 7 | 3.5/3.5/3 1 | -/3.5/3.5 | 4/3.5/3 1 | 3.5/3.5/3.5 | 2/3/2 1 | | DISK PA | Average
Max.
Area | 10000 | 7000 | 0009 | 2200 | 11000 | 11000 | 5500 3 | 7000 | 9000 | 9000 | 6000 | 5000 4 | 30000 | 5000 | 6000 | 4000 | 1800 | 17000 4 | 4000 3 | 7000 2 | | | Days A
Seen A | >12 10 | . 01< | > 10 | >12 | 14 11 | я
: | 13 5 | 13 7 | >12 9 | ; | 13 6 | >12 5 | 14 9 | 13 | 13 6 | 13 4 | 11 1 | 16 17 | 14 4 | 14 7 | | H | 1st I
Seen S | May 05 > | · · | <u>^</u> | | 80
80 | | | 14 | 15 ~ | 18 | 24 | 25 | 83 | . 28 | July
01 | 40 | 0.1 | | 19 | 15 | | TION | Life
Rotations | 2 | 4,1 | 8 | н | | 63 | - | 8 | 8 | 63 | 61 | | 1 | 4. | - | 4. | 1 | £, 4, | 3 | e | | PLAGE POSITION | Date
C.M.F. R | May
11.5 | 17.5 | 25 | June
1.5 | 14.5 | 18.5 | 19.5 | 21 | 22.5 | 25.5 | 3¢ | July
02 | 0.5 | 4.5 | 80 | 10 | 14.5 | 20.5 | | 8 | | PLA | Mean
Lat. C | N13 | S16 | N18 2 | S 22 S | N30 1 | S18 1 | S15 1 | 835 2 | N18 2 | S 20 2 | N12 3 | S12 0 | S 27 0 | N12 | N14 | S13 | S32 1 | N21 24 | N16 26 | S 21 22 | | | Mean 1
Long. | 88 | | 196 | s 16 | 285 | | | 199 S | 179 1 | 139 S | 79 1 | | 13 S | 202 | - | U) | 247 S | N 168 | N 56 | 148 S | | NOL | Category | L,B,N | æ | z | z | L,B | ı | | B,N | B,N | m | B,N | æ | æ | z | Д | В | щ | L,B,N | n,a | z | | DENTIFICATION | Major
Flare
Ser. No. | | | | 22 | | | 23 | 24 | 25,26,27 | | 28,30,31,
32 | | 59 | 33 | 33 | | | 36,37, | 38 | 39,40,41 | | Ä | M ^C M
Plage
No. | 3974 | 3979 | 3987 | 3996 | 4011 | 4018 | 4022 | 4021 | 4024 | 4030 | 4039 | 4043 | 4044 | 4046 | 4048 | 4051 | 4061 | 4065 | 4075 3 | 4070 | | | Serial
No. | -11 | | 19 | 20 | 12 | 22 | 53 | 24 | 25 | 92 | 27 | 82 | | 30 | 31 | 32 | E | 34 | 35 | 36 | | _ | TABLE III. CATALOGUE OF IMPORTANT PLAGES DURING 1957 | П | s - T | - | | | 10 10 | 10.10 | | m = 0 | 9 | 9 2 2 | 2 - 2 2 | - m | 6 9 | رم مر
ام | 5 5 | | 5 | |-------------------------|--------------------------------|---|-----------------------------------|---|-------------------------|----------------------------------|----------------------------------|---------------------------|-----------|-------------------------|--|-------------------------|---|---|-----------------|---------|-------------| | w | , Days
s Seen | Jan. 8-9
1-9
6-9
6-15 | 6-15
6-15
14-16
Dec.27-8 | Jan. 14-19
18-22
14-25
14-15
25-25
19-25 | 15-25
16-25
17-22 | 25-25
25-25
31-5
31-5 | 31-6
31-5
31-10
10-10 | Feb. 2-13
3-13
3-10 | 4-16 | 24-26
22-27
21-22 | Mar. 13-15
15-15
10-21
14-15 | 22-27
19-1
27-28 | 27-29
28-4
26-26 | Apr. 7-13
8-8
1-12 | 5-15
6-15 | 19-27 | May 3-17 | | ASSOCIATED SUNSPOTS | Intensity
100 Gauss | 2
15
10
15
13 | 6
(4)
35 | 8 (3) (5) 8 5 8 8 | 34
(20)
5 | (5)
10
10 | 28
28
28 | 13
10
5 | 35 | 27
3 | 26 (1) (1)
2 26 (1) (1) | 34 | 2
14
(2) | 12
(2)
14 | 33 | (20) | 23 | | SOCIATED | Mag.
Class | 88888
88888
88889 | 1887 | 42 42 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 100 | dapl | Lape | 0 8 p & | IBAL | 900 0
9 8 pc | dad
Axd
ABPE
dad | epol
dod
dod | dapd
dpL
dxb | 4 B L
4 x d
8 B p d | lapl | LByd. | 1876 | | ASS | ji. | & & & & & & & & & & & & & & & & & & & | 3 2 1 | 36
35
37
39 | 33
34 | 00
10
14 | 17
18
19
33 | 22 23 | 24 | 57
54
52 | 02
07
91 | 12221
12216
12230 | 12232
12235
12228 | 12259
12262
12241 | 12254
12258 | 12285 | 12318 | | | Mt. Wil.
No. | 12079
12066
12074
12075
12068 | 12080
12076
12081
12081 | 12086
12096
12085
12087
12107
12107 | 12089
12093
12094 | 12109
12110
12113
12113 | 12117
12118
12119
12133 | 12121
12122
12123 | 12124 | 12157
12154
12152 | 12202
12207
12191
12191 | 122 | 122 | 122 | 122 | 122 | 123 | | LIFE HISTORY | Plage No.'s Previous Rotations | 3755
 3757 | | 3772 3789 3686 3642 3772 3789 3642 | 3774 | | 3 3788 [3755 | | | 3808 | 3853 3822 3800 3173 3743
resurgence of an old plage
3857 | | 3872 3838 3813 (See No.1)
Resurgence | 3881 3847
Part of 3884 3849 3820 (See No. 3) | i8 (See No. 10) | 0.00 | 61 | | | | 3788 | New | 3797 | 3801 | 3808 | 3813 | New | New | 3830 | 385 | New | 387.
Res | Par | 3888 | 3900 | 3939 | | | Total
Flares | 27 | 28 | 36 | 37 | 9 | œ | 14 | o | 4 | 12 | 31 | 25 | 24 | 41 | 36 | 42 | | E DATA | No. Flares
E/C/W | 6/19/2 | 5/12/11 | 2/25/9 | 4/31/2 | 2/4/0 | 0/7/1 | 1/9/4 | 1/1/1 | 0/3/1 | 3/5/4 | 5/22/4 | 0/8/17 | 2/19/3 | 21/16/4 | 13/19/4 | 14/23/5 | | DISK PASSAGE PLAGE DATA | Intensity
E/C/W | 3.5/3/3.5 | x/4/3.5 | 3/3/2 | 3.5/3.5/3 | 3/3/3 | 3.5/3/2.5 | 3/3/2.5 | 3/3.5/3.5 | 3/3/3 | 3/3/3 | 3/3.5/3.5 | 3/3.5/x | 3/3/3 | x/3.5/x | 3/3/2.5 | 3.5/3,5/3.5 | | DISK P | Average
Max.
Area | 19000 | 2000 | 0006 | 16000 | 8500 | 11500 | 7500 | 1000 | 3200 | 2000 | 8500 | 5200 | 5500 | 0009 | 0006 | 10000 | | L | Days
Seen | 15 | 13 | 13 | >12 | 14 | 14 | 13 | 13 | es | 14 | > 11 | 11 < | 13 | > 11 | 15 | 13 | | | 1st
Seen | Jan.
02 | 1 | ; | 15 | 23 | 29 | Feb.
01 | 40 | 19 | Mar.
09 | ł | 23 | Apr. | ; | 15 | May
04 | | SITION | Life
Rotations | e e | | Q | e | N | 4 | | | e | 1,(6) | 1 | 9 | 3.9 | ۲- | 63 | 2 | | PLAGE POSITION | Date
C.M.P. | Jan.
9.5 | 2.5 | 19 | 23 | 30 | Feb.
05 | 80 | 10.5 | 25 | Mar.
16 | 26.5 | 30.5 | Apr.
7.5 | 12.5 | 23 | May
11 | | ā | Mean
Lat. | S 22 | N20 | S 28 | N20 | N20 | S 20 | S 18 | S 26 | N18 | S 22 | S 15 | \$13 | S 24 | S 23 | N28 | S 28 | | | Mean
Long. | 183 | 275 | 88 | ري
 | 273 | | 145 | 117 | 291 | = | 262 | 509 | 104 | 38 | 259 | 21 | | ATION | Category | L.B | В | × | L.B,N | | ы | - | щ | | | B,X | | | z | z | L.B.N | | DENTIFICATION | Major
Flare
Ser. No. | - | 2,3 | 4,5,6,10 | 7,8.9 | 11 | | 12 | | 13 | 14 | 15,16 | 17 | 18 | 19 | 20,21 | | | ā | Mc M
Plage
No. | 3813 | 3808 | 3820 | 3823 | 3830 | 3838 | 3843 | 3844 | 3863 | 3888 | 3899 | 3907 | 3916 | 3923 | 3941 | 3972 | | _ | Serial
No. | | | | | | | | | | | | | | | | | 2. 田 -3 TABLE III 1957 (CONTINUED) | | Days | 26-6
Aug. 2-7
27-8 | 28-10 | 15-20
15-27
17-18
26-26
26-26 | 23-4 | 28-31
29-31
24-3
24-6 | 27-5
25-7
25-6
27-2
31-31 | Sept. 11-11
9-9
3-17
9-9 | 8-17 | 21-23
20-22
13-26 | 13-25 | 21-28
20-2
20-2
22-2
29-29
22-2
24-24
25-4 | 23-6
29-30
Oct. 4-6
28-28 | 26-7 | 1-6
7-10
6-12
7-10 | 1-12 | |-------------------------|--------------------------------|--------------------------|-------------|---|-------------|---|---|--|---------|-------------------------|----------------|--|------------------------------------|-------------|----------------------------------|--------| | SUNSPOTS | Intensity
100 Gauss | 26 7 28 | 23 | 26
26
(2)
(2) | 15 | 28 (S 2 1 | 20
20
3 | | 26 | 35.56 | 30
31 | 25 4 26 26 26 27 13 (1) (1) (1) | 30 (3) (4) | 25 | 4
7
7 | 11
| | ASSOCIATED SUNSPOTS | Mag.
Class | lapt
døft
lyl | 1001 | Lad
Oaple
dad
dad
dad | lbfl | 7 × 8 × × × × × × × × × × × × × × × × × | 6 8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | dbd
dad
dbd | ABB | 4 8 pd | RBPL
dBYL | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | RBPR
dxd
dxd | 1808 | dapd
dapd
dal | P+&P | | | Mt. Wil.
No. | 12513
12525
12514 | 12516 | 12562
12563
12567
12582
12583 | 12577 | 12587
12588
12578
12579 | 12585
12580
12581
12586
12590 | 12614
12610
12596
12611 | 12606 | 12637
12632
12622 | 12623
12634 | 12640
12635
12636
12642
12662
12644
12649
12652 | 12648
12663
12673
12661 | 12654 | 12670
12679
12676
12680 | 12669 | | LIFE HISTORY | Plage No.'s Previous Rotations | 4044 (See No. 29) | | (See No. 35) | | (See No. 37) | (See No. 38)
4048 | Mostly new & 4023 3887 (See No. 19) Part of 4065 4024 (See No. 25) 4028 4000 4029 Part of 3991 | | (See No. 39) | | (See No. 42) | | | (See No. 43) | | | | 8 | 4044 | 4057 | 4078 | 4092 | 4082 | 4083
4084
4095
4096 | 4098 | New | 4112 | 4114 | 4124 | 4145 | New | 4134 | New | | | Total
Flares | 55 | 42 | 43 | 23 | 19 | 110 | œ
E | 44 | 83 | 22 | 63 | 119 | 14 | 30 | 17 | | GE DATA | No. Flares
E/C/W | 5/41/9 | 4/27/11 | 8/19/16 | 14/8/1 | 8/46/7 | 14/70/26 | 9/22/8 | 0/40/4 | 13/62/8 | 16/35/4 | 13/40/10 | 12/7/0 | 0/12/2 | 1/19/10 | 5/1/5 | | DISK PASSAGE PLAGE DATA | Intensity
E/C/W | 2.5/3.5/3.5 | 3.5/3.5/3.5 | 3.5/3.5/3.5 | 3.5/3.5/3.5 | 3.5/3.5/3 | 3.5/4/3.5 | 3.5/3.5/3.5 | 1/3/2.5 | 3.5/4/3 | 3.5/4/3.5 | 3.5/3/3 | 3.5/3.5/3 | 3.5/3.5/3.5 | 2/3/2.5 | x/3/3 | | DISK | Average
Max.
Area | 7600 | 2000 | 22000 | 4500 | 8000 | 21000 | 0006 | 3000 | 7800 | 0009 | 19000 | 0009 | 3600 | 7500 | 5200 | | | Days
Seen | 14 | 14 | 41 | 13 | 14 | 41 | 41 | 12 | > 12 | 14 | 15 | 15 | 14 | 4. | = | | | 1st
Seen | July
26 | 28 | 15
15 | 23 | 23 | 25 | Sept. | 96 | ; | 22 | ର | 23 | 92 | 0ct. | 20 | | SITION | Life
Rotations | 0 | 63 | 4 | 81 | m | 3,2 | ο • | 1 | ю | N | £,4, | 89 | - | m | - | | PLAGE POSITION | Date
C.M.P. | Aug.
1,5 | 5.5 | 22.5 | 58 | 30 | 31.5 | Sept. | 11.5 | 61 | 20.5 | ž . | 2 | 2.5 | 7.5 | 80 | | PL | Mean
Lat. | S 28 | N23 | N14 | N12 | S27 | N22 | N12 | S17 | N19 | NI1 | N20 | N17 | N28 | N14 | s 40 | | | Mean
Long. | o | 330 | 85 | | 353 | 333 | 207 | 188 | 68 | 69 | | 290 | | 204 | 198 | | TION | Category | X, E | B,N | L,B,N | щ | B,N | L,B,N | B,N | z | N,B | B,N | L,'N | m | ш | z | | | DENTIFICATION | Major
Flare
Ser. No | | 42 | 43,44 | | 45,46,48,
50,55,56 | 47,49,51,
52,53,54,
57,58,59 | 60,61,63,
64,65 | 62 | 67,68,69,
70,71,72, | 66,73,74, | 75,76 | | | | 77 | | ĐΕ | McM Plage | 4082 | 4083 | 4112 | 4122 | 4125 | 4124 | 4134 | 4141 | 4151 | 4152 | 4159 | 4162 | 4165 | 4172 | 4173 7 | | | Serial
No. | 37 | 38 | 38 | - | 4 | 24 | £ | 44 | 5 | 46 | 47 | 84 | 49 | 09 | 51 | | | T | Days
Seen | 4-16 | 9-19 | 12-16
10-18
17-17
12-16
15-19
23-24 | 10-24
12-24
12-19 | 18-30
23-28
19-30
22-30
27-27 | 22-1
25-25 | 4-4
25-5
25-6
26-1 | 30-11
30-11
1-12 | 5-12
9-17
5-18 | 11-16
9-12
8-16 | 16-25
21-24 | 16-23
16-26 | 18-28 | 20-26
20-2
23-30 | 24-3
27-27 | 26-10
29-3
Dec. 2-10
2-2 | | |---|-------------------------|--------------------------------|------------|-------------|--|--------------------------|---|----------------|----------------------------------|-------------------------|-------------------------|-------------------------|----------------|-------------------|-----------|-------------------------|--------------------------|-----------------------------------|-----------| | | LIS | | Oct. | | ਜ ਜਜ ਜਜ ੇ 6 | | - 0 - 0 0 | 0.0 | Nov. | en en | | 1 | 7 7 | | - | MMM | | Dec. | | | | SUNSPO | Intensity
100 Gauss | 28 | 16 | 13.
2. 9. (2) e s | 29
17
15 | 13
6
17
16
(2) | 17 (2) | (2)
17
20
2 | 15
16
20 | 19
8
16 | 2
4
10 | 18 (10) | 14 | 6 | (10) | 21 (2) | 20
3
8
(2) | | | _ | ASSOCIATED SUNSPOTS | Mag.
Class | 1601 | 1001 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 14 ft | RAGE AXX | RAPL | 1850 | 1001
1901
1901 | 1808
4808
192 | dapd
dpd
Lad | RBP1
dx R | lapd | ьдь | lopd | d Apl | Lyk
Spd
Sak
Sxd | | | | AS | Mt. Wil.
No. | 12675 | 12684 | 12692
12687
12705
12695
12702
12721 | 12689
12694
12696 | 12707
12722
12710
12716
12735 | 12718
12728 | 12752
12730
12732
12734 | 12744
12745
12749 | 12762
12772
12763 | 12776
12773
12768 | 12779 | 12780 | 12783 | 12787
12788
12796 | 12800
12810 | 12808
12815
12827
12828 | No Spots | | | LIFE HISTORY | Plage No.'s Previous Rotations | 4142 4101 | New | 4152 (See No. 46) | 4155 In position of 4120 | 4159 (See No. 47) | New | 4167 4136
4175 4147 | 4177 4141 (See No. 44) | New | 4189 (See No. 55) | New | 4197 (See No. 56) | 4203 | 4207 (See No. 58) | New
in region of 4210 | 4218 (See No. 59) | 4220 | | | | Total
Flares | 14 | 19 | 26 | 92 | 42 | 13 | 54 | 17 | 16 | 17 | 28 | 27 | 12 | 38 | 27 | 44 | - | | | DATA | No. Flares
E/C/W | 10/3/1 | 6/13/0 | 10/14/2 | 17/54/21 | 10/30/2 | 2/11/0 | 11/31/12 | 4/4/9 | 6/9/1 | 6/11/0 | 1/21/6 | 0/22/5 | 4/8/0 | 6/29/3 | 1/12/14 | 11/27/6 | 0/0/0 | | | DISK PASSAGE PLAGE DATA | Intensity
E/C/W | 4/3.5/3 | 3.5/3.5/3.5 | 3/2.5/2 | 3.5/3.5/3.5 | 3.5/2.5/2.5 | 3.5/3.5/3 | 3/3.5/3 | 3/3.5/3.5 | 3,5/3,5/3 | 3/2.5/2 | 3/3.5/3.5 | 3.5/3.5/3.5 | 3.5/3.5/3 | 4/3.5/2.5 | 3/3.5/4 | 3.5/3.5/3.5 | 1,5/1.5/x | | | DISK P | Average
Max.
Area | 2000 | 4000 | 8500 | 18000 | 12500 | 2000 | 18000 | 0099 | 11000 | 8000 | 7000 | 5200 | 5500 | 8500 | 2000 | 7000 | 1000 | | | | Days
Seen | >12 | 13 | 14 | 41 | 14 | 13 | 13 | 14 | 13 | 13 | 212 | 13 | 211 | 13 | 12 | 13 | >7 | | | | lst
Seen | Oct. | 60 | 10 | 10 | 18 | 21 | 25 | 30 | Nov.
05 | 80 | ≤ 15 | 15 | 17 | 50 | 24 | 27 | 28 | | | TION | Life
Rotations | ေ | 1 | က | 8 | ro | 1 | ო | က | | e | 1 | 9 | 81 | 4 | 1 | 4 | 2 | | | PLAGE POSITION | Date
C.M.P. 1 | Oct.
11 | 15 | 17.5 | 17.5 | 25.2 | 28 | 31.5 | Nov.
06 | 12 | 14.5 | 20 | 21 | 24 | 27 | 29.5 | 3.5 | S | | | PLA | Mean
Lat. | N18 | \$17 | N10 | S 25 | N20 | S13 | S 18 | S17 | N18 | S 21 | N26 | N15 | S15 | S15 | \$18 | s 20 | N39 | | | | Mean
Long. | 158 | | | 73 | 327 | | | | | | | | | | | | | | | TION | Category | В | æ | | , L,B,N | Z, Z | æ | r,'r | æ | L.B | | Ω | В | ф | B,N | æ | x, | | | | DENTIFICATION | Major
Flare
Ser. No. | | | 78 | 79,80,81,
82,83,84 | | 85 | 86,87,88 | | 90,91 | 68 | 85 | | | 93 | 95,96, | 97 | 94 | | | DE | McM
Plage | 4179 | 4185 | 4186 | 4189 | 4197 | 4203 | 4207 | 4218 | 4230 | 4237 | 4246 | 4247 | 4255 | 4263 | 4269 | 4288 | 4282 | | | Н | Serial 1
No. | 52 | 53 | 4. | 55 | 26 | 52 | 28 | 50 | 09 | 19 | 62 | 63 | 49 | 65 | 99 | 67 | 89 | | | ш | | 1 | | | | | | | | | | | | | | | | | TABLE III 1957 (CONTINUED) | _ | | | | | | | | | | | |-------------------------|-------------------------------------|-------------|---------|----------------------------------|-------------------------|----------------------------|----------------------------------|---------|----------------|---| | | Days
Seen | Dec. 3-11 | 6-9 | 6-7
6-13
10-17
13-13 | 12-24
17-17
17-20 | 13-26
17-17 | 17-28
17-30
23-23
19-30 | 18-31 | 25-31
19-31 | 28-28
23-23
20-1
21-21
21-26 | | SUNSPOTS | Intensity
100 Gauss | Ω
6 | ß | 5
22
17
(1) | 36
2 | 22 (2) | 11
21
(1)
18 | 27 | 16
29 | (2)
4
14
(2)
(10) | | ASSOCIATED SUNSPOTS | Mag.
Class | PØI | ВА | RAPE
BPL
DSFL
DSFL | lBpl
dxd
dbd | 18x | lapd
191
dapd
dbl | 1801 | 487T | dad
LBR
dad
dad | | | Mt. Wil.
No. | 12832 | 12840 | 12837
12838
12845
12852 | 12851
12861
12862 | 12855
12863 | 12870
12869
12890
12877 | 12874 | 12898
12878 | 12892
12882
12882
12884
12886 | | LIFE HISTORY | Plage No.'s Previous Rotations | 4230 | New | 4233 | New | New | 4263 (See No. 65) | New | New | 4269 | | | Total
Flares | 7 | 'n | 13 | 13 | 43 | 24 | 04 | 13 | 21 | | GE DATA | No. Flares
E/C/W | 1/6/0 | 3/2/0 | 0/11/2 | 4/8/1 | 10/23/10 | 7/12/5 | 4/24/12 | 1/12/0 | 10/9/2 | | DISK PASSAGE PLAGE DATA | Intensity
E, C, W | 2/3/2 | 2/2.5/1 | 3/3.5/3.5 | 3.5/3/2.5 | 4/3.5/3 | 2.5/3/3 | 3/3/3 | 3/3/3 | 3.5/3/3 | | DISK | Average
Max,
Area | 4000 | 2000 | 8500 | 11000 | 8500 | 14000 | 12000 | 15000 | 10000 | | | Days | 13 | 11 | 13 | 14 | 14 | 13 | 14 | 13 | 13 | | | 1st
Seen | Dec.
03 | 90 | 04 | 12 | 13 | 17 | 18 | 61 | 20 | | PLAGE POSITION | Date Life
C.M.P. Rotations | 2 | 1 | 63 | - | - | rb | | | 61 | | AGE P | Jate
C.M.P. | Dec.
9.5 | 10.5 | Ξ | 19 | 20 | 24 | 24 | 26 | 27 | | Id | Mean
Lat, | N15 | S 35 | N08 | S 14 | 71N | S 22 | N22 | N28 | \$14 | | | Mean
Long. | | | | | | | | | | | DENTIFICATION | Major
Flare Category
Ser. No. | 66 | 86 | α | יי | 100,101,102,B.N
103,104 | u | 105 L.N | IJ | ٦ | | DE | McM
Plage
No. | 4295 | 4301 | 4296 | 4313 | 4314 | 4319 | 4321 | 4328 | 4323 | | Г | Serial
No. | 69 | 02 | 12 | 72 | 73 | 4- | 75 | 92 | <i>tt</i> | # TABLE IV. CATALOGUE OF IMPORTANT RADIO EMISSIONS FROM THE SUN DURING 1957 This table will include all important radio emissions from the sun that occur within an acceptable time of: - (a) The major flares reported in Table I. - (b) Events listed in Table VIII (Solar Activity Chronological Catalogue) that had important solar radio emission associations. This will include outstanding
emissions (peak flux ≥500) at 2800 Mc/s or 200 Mc/s even though, only a sub flare, a minor flare, or no flare was reported at the time of the emission. - (c) All reported spectral emissions of the Type II (slow drift bursts) and Type IV (broad band continuum). Due to the period from approximately 0600 UT to 1300 UT when there is no sweep frequency patrol of the sun, we have included data from studies by Pick-Gutman (reference 44). Hakura and Goh, (reference 22) and others who have used radio emissions at single frequencies in both the meter and centimeter wave lengths to derive probable spectral emissions of the Type IV. In order to make this phase of the catalogue as completed and useful as possible, we have included emissions for a wide range of frequencies from 9500 Mc/s to 167 Mc/s, and whenever significant fluxes were reported at low frequencies data are also included. These single frequency data have been taken from reference 63. Normal observing hours of the solar radio observatories in both the discrete and sweep frequency programs are shown on page 2.IV-v. All fluxes at single frequencies are reported in units of 10^{-22} Wm⁻² $(c/s)^{-1}$. The following symbols, singly or in groups (reference 43), illustrated on page 2.IV-iv are used to describe single frequency reports of outstanding occurrences: - S = simple rise and fall of intensity. - C = complex variation of intensity. - A = appears to be part of general activity. - D = distinct from (apparently superposed upon) the general background. - M = multiple peaks separated by relatively long periods of quietness. - F = multiple peaks separated by relatively short periods of quietness. - E = sudden commencement of rise of activity. - ECD = a complex distinct disturbance with very sharp rise. - CD = complex disturbance of moderately sharp rise. Not all emissions reported in reference 63 at the time of the flare are included in the catalogue, and no general minimum flux has been used as a cutoff point. Occasionally more than one report at a given frequency is included. In general the peak flux, if reported, is given. If the peak flux is not available, the smoothed flux is used, and indicated by enclosing the value in a bracket (). If the peak flux is greater than the reported value, the recorded flux has been underlined. A list of the observatories, their identification code, and normal operating times for each of the four quarters during 1957 is given on page 2.IV-v. Figures 2.IV-1 and 2.IV-2 show the observatories and normal operating times for the first and fourth quarters of 1957, respectively. Table IV is arranged in three general columns. - (a) FLARE, if any, associated with the radio emission. - (b) RADIO EMISSIONS OF THE SPECTRAL TYPE - (c) RADIO EMISSIONS AT SINGLE FREQUENCIES The column headings together with any necessary explanations follows: ## FLARE DATA - (Columns 1 through 7) - Column 1 Date. - Column 2 Beginning Time UT. If the start of the flare was observed, the time is underlined. - $\frac{\text{Column 3}}{\text{time is underlined.}} \stackrel{\text{End Time UT.}}{\text{when the end of the flare was observed the}}$ - Column 4 Maximum Time UT. This value has been taken from reference 12 for the second six months of 1957 and unpublished data for the first six months. - Column 5 Heliographic Position. The position of the flare is taken as the arithmetic mean of the values reported in the IAU Bulletin. - Column 6 Importance. The method used for major flares has already been described in connection with Table I. The minor flares are reported as 2+, 2, 1+, 1 as the highest importance given reference 63, subflares are denoted with importance 1-. In a number of cases it will be noted that the flare importance given in this column will be greater than the importance given for the same flare in Table VIII, this difference in values is discussed in some detail in the description of Table I. - Column 7 Flare and/or Event Serial Number. These are the serial numbers of the major flare in Table 2.I or the event number in the chronological catalogue Table 2.VIII, for the purpose of cross reference. #### SPECTRAL EMISSIONS Outstanding spectral emissions of Types I, II, III and IV are given in Table VIII. The entries in this table will be limited to emissions of Type II and Type IV reported by CSIRO Sydney (Syd) and/or the Harvard Radio Astronomy Observatory (Har) at Fort Davis, Texas. We have also included spectal emissions of the Type IV that have been derived by Pick-Gutman (Ref. 44) or Hakura and Goh (Ref. 22) from single frequency observations. These derived Type IV emissions are particularly useful for the time period from approximately 0600 to 1300 UT when neither the Harvard nor the CSIRO sweep frequency observatories are in the sun light. #### TYPE II SLOW DRIFT BURSTS (Columns 8 through 12) Column 8 Beginning Time UT. Column 9 End Time UT. Column 10 Intensity. Column 11 Frequency Range. Column 12 Observatory or reference. #### TYPE IV BROAD BAND CONTINUUM (Columns 13 through 17) Column 13 Beginning Time. Column 14 End Time. Column 15 Intensity. Column 16 Frequency Range. Column 17 Observatory or reference. #### RADIO EMISSIONS AT SINGLE OR DISCRETE FREQUENCIES (columns 18 through 24) Selected frequencies between 9500 Mc/s and 167 Mc/s associated in time with the major solar flares, solar-terrestrial events, or spectral emissions are tabulated in a descending order of frequency with the following data. Column 18 Frequency. Column 19 Type. Column 20 Beginning Time. Column 21 End Time. Column 22 Time of Peak Flux (No times of peak flux are reported during the first six months of 1957) Column 23 Peak Flux (or smoothed flux) Column 24 Observatory. # FIGURE 2.IV-1 SOLAR RADIO OBSERVATORIES NORMAL OBSERVING TIME DURING THE FIRST QUARTER 1957 2.IV-vi # SOLAR RADIO OBSERVATORIES, SYMBOLS, FREQUENCY & NORMAL OPERATING TIMES DURING 1957 | Name of Observators | Location | Code | Frequency | OPERATING TIME | | | | | | |--|--------------------------|------------|--------------------------------------|----------------|-------------------------|---|----------------------------------|--|--| | Name of Observatory | LOCATION | Code | riequency | 1st Quarter | U.T.
2nd Quarter | (hrs)
3rd Quarter | 4th Quarte | | | | Tokyo Astronomical Observatory | Mitake, Tokyo | Tok | 9500
3000
200 | 00-06
00-06 | 23-09
00-06
23-07 | 23-09
00-06
23-07 | 23-06
00-06
23-07 | | | | Research Institute of Atmospherics | | Nag | 100
67
9400 | 00-06 | 23-08 | 00-06
90-08
23-08 | 00-06
00-06
23-06 | | | | | Toyakowa | | 4000
3750
2000
1000 | 00-06
00-06 | 23-08
23-08
23-08 | 00-04
23-08
23-08
23-08 | 00-04
23-06
23-06
23-06 | | | | Radio Astronomy Section P.T.T The Hague, Netherlands | Nederhorst | Ned | 2980
545
250
200 | 07-16
07-16 | 07-16
07-16 | 05-18
05-18
09-12
05-18 | 08-15
08-15
09-12
08-15 | | | | Astronomical Institute of the
Czechoslovak Academy of
Sciences, Ondrajov | Prague | Pra | 536
231 | 06-16 | 06-16 | 05-18 | 08-14
08-14 | | | | Cornell University, Ithaca,
New York, U.S.A. | Ithaca | Cor | 202 | 14-21 | 14-21 | 12-21 | 13-20 | | | | National Bureau of Standards
CRPL, Boulder, Colorado | Boulder | NBS | 470
460
167 | 14-24
14-24 | 14-24
14-24 | 12-24
12-24 | 14-23
14-23 | | | | Observatory Royal de Belgique,
Bruxelles, Belgium | Uccle | Ucc | 600
167 | 07-17
07-17 | 06-18
06-18 | 06-18
06-18 | 08-15
08-15 | | | | Hiraiso Radio Wave Observatory
Nakaminto-Shi Ibaraki-ken | | Hir | 200 | | | 00-09 | 21-09 | | | | Astrophysikalisches Observatory
Potsdam Tremsdorf b, Germany | | AOP | 231
23 | | | 09-15
09-15 | 08-14
08-14 | | | | Institute for Toretisk Astrefysikk
Universitetet Blinderm, Oslo,
Norway | Osto | Osl | 200 | | | 03-21 | 07-15 | | | | Radio Physics Laboratory, Sydney
Australia | Sydney | Syd | 1420
600
Spectrum
40 - 240 | 21-06
21-06 | 00-06
00-06
22-07 | 00-06
00-06
22-07 | 21-07
21-07
23-08 | | | | Cavendish Laboratory
Cambridge, England | | Cav | 175
81 | 10-15
10-15 | 10-15
10-15 | 09-15
09-15 | 09-1
09-1 | | | | Heinrich Hertz Institute
Edlershof, Germany | Berlin | нні | 9400
3000
2900
2000
1500 | | 07-18 | 07-18
07-18
07-18
07-18
07-18 | 06-1
06-1 | | | | National Research Council | Ottawa | Ott | 2800 | 12-23 | 12-23 | 10-24 | 12-2 | | | | Ottawa, Canada
Jodrell Bank Experimental Station
England | | Jod | 3000
200
80 | | | 06-18
06-18
06-18 | 06-1
06-1 | | | | Harvard Radio Astronomy Station
Fort Davis, Texas, U.S.A. | Fort Davis | Har | Spectrum
100 - 580 | | 12-02 | 12-02 | 14-0 | | | | I.R.S.A.C., D.S. Bukavu, | Belgian Congo | IRS | 169 | | | 06-15 | 06-1 | | | | Chalmers Institute of Technology | Gothenbury, Sweden | CIT | 150 | | | 03-18 | 06-1 | | | | Observatoire de Paris, Mendon,
Nancay Field Station | | Nay | Strip-Scan
169 | 1 | 11-13 | 11-13 | 11-1 | | | | Paramarito | | Par | 545
200 | | 11-21
11-21 | 11-21
11-21 | 11-2
11-2 | | | | Hollandia | | Hol | 545
200 | | | 21-08
21-08 | 21-0 | | | | National Committee for LG,Y,, Nizz
WDC, P O Vatutenki Moscow 17, US | mir
SSR | | | | | | | | | | | Bjurakan | Bju | 209 | | | 06-09 | 06-0 | | | | | Gorky | Gor | 9375
3000
206 | | | 06-12
06-12
06-12 | 06-
06-
06- | | | | K | Kislovadsk | Kis | 178 | | | 09-12 | 09- | | | | Krasnaya Pakhra | Moscow | Mos | 600
208 | | | 06-12
06-12 | 09-
09- | | | | | Simferopal
Abastumani | Sim | 210 | | | 09-12 | | | | | | Simeis | Aba
Sis | 209 | | | | 09-
12- | | | | | Simferopal | Sim | 208 | | | | 09- | | | | | Cracow | Cra | 810 | | | | 09- | | | # FIGURE 2.IV-2 SOLAR
RADIO OBSERVATORIES NORMAL OBSERVING TIMES DURING THE FOURTH QUARTER 1957 | TARLE | IV | CAT | $\mathbf{A} \mathbf{I} \mathbf{\cap}$ | CHE | $\triangle E$ | |-------|----|-----|---------------------------------------|-----|---------------| | | | | | | | | | | | | | | | | TAB | LE IV | CAL | ALOGUI | E OF | |------------|--------------|-------------------------------------|----------------------------------|--------------|-------------|------------|------------------------|--------------|----------------------|---------------------|--------------|----------------| | | | I | LARE | | | | | | <u> </u> | SPECTRAL | OBSERVATIO | ONS TYP | | ir.
Day | Beg.
UT | End
UT | Max.
UT | Positio | on | Imp. | Flare
Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | | Jan.
5 | | e Patrol b
. 4 to 011 | etween
0 on Jan. : | - | | | | | | | | | | 6 | 1038 | 1443 | 1128 | S 21 | E38 | 3+ | 1 | 4 | | | | | | 6 | No Flare | e Patrol | | | | | | 5 | 1703 | 1712 | 3+ | 580-10 | | 7 | 1311 | 1422 | 1358 | N17 | W 62 | 3 | 2 | | | | | | | 7 | No Flare | e Patro! | | | | | | 7 | 1733.7 | 1738 | 3+ | 580 - 1 | | 8 | 1324 | 1455 | 1339 | N17 | W71 | 3- | 3 | | | | | | | 00 | 0144 | 0251 | 0201 | S 25 | W52 | 3 | 6 | | | | | | | 23
23 | 0144
2310 | 2358 | 2314 | N17 | | 3+ | 7 | | 1 | | | | | 24 | 0247 | 0342 | 0250 | | | 3 | 8 | | } | | | | | 24 | 1225 | 1354 | 1241 | N16 | w 31 | 3 | 9 | 12 | | | | | | 24 | No Flar | e Patrol | 1600 to 24 | 00 | | | | 14 | 2326
2328
2328 | 2329
2329
221 | -
3
- | -
145-1 | | 25 | 0520 | <u>0537</u> | 0526 | S 22 | w89 | 3 | 10 | | | | | | | 28 | No Flan | re Patrol | 1500 - 240 | 00 | | | | 15 | 2351
2348 | 2352
2354 | 3 - | 135-1
- | | 31 | 0358 | 0550 | 0436 | N24 | E05 | 3 + | 11 | 17 | 0407 | 0424 | - | - | | Feb.
8 | <u>1550</u> | 1615 | 1555 | S 28 | E38 | 2 | | 19 | 1551 | 1555 | 3+ | 580-1 | | 12 | No Fla | are Patro | 1 1500 - 1 | 800 | | | | 20 | 1546 | 15% | 3 | 165-1 | | 21* | 1605 | 2205 | 1930 | N20 | W 33 | 3+ | | 24 | 2008 | 2012 | 2 | 155-1 | | 28 | 0005 | 0420 | 0057 | N18 | W 35 | 3 | 13 | 26 | 0009
0017 | 0026
0020 | -
3+ | -
140- | | Маг.
1 | No Flan | re Report | ed | | | | | 27 | 0035 | 0059 | | | | 26 | | re Repor | | | | | 1 | 33 | 0412 | 0416 | 3 | - | | 26 | | re Repor | | | | | 1 | | 1327 | 1329 | - | - | | 29 | 1025 | 1400 | 1115 | 815 | W40 | 3- | 15 | | | | | | | Apr.
2 | 0255 | 0444 | 0256 | S 16 | W46 | 2 | | 38 | | | | | | 2 | 1002 | 1012 | _ | s 08 | w 90 | 3 | 16 | | | | | | | 2 | 1959 | 2120 | _ | N25 | w90 | 1 | | 39 | | | | | | 3 | 0825 | 1026 | 0835 | S 14 | w 60 | 3 | 17 | 40 | | | | | ^{*}This flare was reported by Sac. Peak without importance. The 3+ has been assigned by McMath. It may have produced the series of radio emissions and the type II burst. # 1957 (CONTINUED) | | SPE | CTRAL OB | SERVATIO | v | SINGLE FREQUENCY RADIO EMISSIONS | | | | | | | | |-------------------|--------------|-----------|--------------|----------------|----------------------------------|--------------|----------|--------------|------------------|------------|-------------------|------------| |)s. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | Obsev.
Ref. | Freq. | Туре | Beg. | End
UT | Max.
UT | Flux | Obs. | | yd | | | | | | No Ot | her Rac | dio Frequ | ency Emiss | ions | | | | yd | | | | | | 9400 | CD | 0342 | 0343,4 | - | (343) | Nag | | | 1 | | | | | 3000
1000 | CD | 0341 | 0346.2 | - | 440 | Tok | | | | | | | | 200 | CD | 0341
0341 | 0342.6
0342.5 | - | 326
360 | Nag
Tok | | i | | | | | | 3750 | CD | 0616 | 0621.1 | | (133) | Nag | | †d | | | | | | 1000 | CD | 0619 | 0624 | | (18) | Nag | | i | | | | | | 2800 | ٠ | 1500 | 1746 | | | _ | | ļ . | | | | | | 460 | `CA
M | 1730
1717 | 1746
1728 | - | (135)
150 | Ott
NBS | | | | | | | | 167 | CD | 1726 | 1739 | - | 270 | NBS | | r,38 | 1856 | | | | 44 | 2800 | SD | 1856 | . 1919 | _ | (525) | Ott | | | | | | | | 167 | CD | 1858 | 1913 | - | 1600 | NBS | | r,38 | | | | | | 200 | CD | 1358 | 1410 | - | 1500 | Ned | | 1 | | | | | | 167 | CD | 1359 | 1405 | - | 1500 | NBS | | 1 | 1039 | | Α | | 44 | 9400 | CD | 1938 | 1246 | _ | (1262) | нні | | i | 1047 | | | | 52 | 2980
2800 | CD
CD | 1037
1040 | 1127
1134 | - | 1670 | Ned | | ! | | | | | | 600 | CD | 1044 | 1104 | - | (1650)
400 | Ott
Ucc | | : | | | | | | 545 | CD | 1046 | 1103 | - | 1100 | Ned | | 1 | | | | | | 200 | CD | 1047 | 1103 | - | 800 | Ned | | | | | | | | 9400 | CD | 1000 | 1115 | - | 348 | нні | | r,38 | | | | | | 2800 | CA | 1844 | 1849 | - | (142) | Ott | | | | | | | | 460
200 | SD | 1847 | 1847.9 | - | 260 | NBS | | | | | | | | | CD | 1843 | 1851.5 | - | <u>75</u> | Cor | | .r,38 | 2011
2006 | 2055 | 2 | 580-100 | Har, 38
44 | 2800
460 | CD | 2006 | 2125 | - | (6000) | Ott | | | 2032 | | | | 37 | 200 | CD
CD | 2014
2033 | 2056
2058 | - | 608
159 | NBS
Cor | | r,38 | 1305 | | Α | | | 9000 | O.D. | | | | _ | | | .1,30 | 1000 | | А | | 44 | 2980
2800 | CD
SD | 1304
1305 | 1310
1312 | - | 550
(385) | Ned
Ott | | | | | | | | 1500 | CD | 1305 | 1330 | - | (451) | нні | | | | | | | | 600
200 | E
CD | 1306
1305 | 1318
1311 | - | 110
800 | Ucc | | _{ir,} 38 | | | | | | | | | | - | 800 | Ned | | ,,, | | | | | | 9400 | SD | 2328 | 2329.8 | - | (180) | Nag | | ir,38 | 1838 | | | | 44 | 2800 | SD | 1838 | 1848 | - | (410) | Ott | | 26,38 | | | | | j | 200 | CD | 0007 | 0012.5 | _ | 1400 | Tok | | ir,38 | | | | | | | | 0001 | 0012.0 | | 1100 | TOK | | ,,,,,,, | | | | | | | | | | | | | | ir | | | | | | No Oth | or Rad | lid Frague | ncy Emiss | ione | | | | ir | 1253 | | _ | | | | | _ | - | ions | | | | ì l | 1233 | | В | | 44 | 2800
460 | CD
SD | 1253
1255 | 1304
1258.5 | - | (270)
180 | Ott
NBS | | ŀ | 1040 | | | | | | | | | | | NEG | | l l | 1042 | | В | | 44 | 2800
600 | CD | 1042
1047 | 1103
1122 | - | (250)
300 | Ott | | | | | | | | 545 | CD | 1046 | 1104 | - | 800 | Ucc
Ned | | | | | | | | 200 | CD | 1047 | 1103.5 | - | 250 | Ned | | | 0859 | | В | | 44 | 2980 | SD | 0859 | 0909 | - | 350 | Ned | | | | | | | į | 2980
536 | SD
CD | 0917
0902 | 0927 | - | 610 | Ned | | | | | | | | 200 | CD | 0902 | 1022
1017 | - | 334
800 | Pra
Ned | | | | | | | | 169 | CA | 0903 | 0919 | - | 135 | Ucc | | ır,38 | | | | | | 2980 | SD | 1325 | 1329 | _ | 670 | Ned | | | | | | | | 2800
200 | SD | 1327 | 1335 | - | (725) | Ott | | | | | | | | 200 | CD | 1330 | 1334 | - | <u>250</u> | Ned | | | | | | | | 9500
2980 | CD
SD | 0739 | 0744 | - | 604 | Tok | | | | | | | l | 2960 | SU | 0738 | 0743 | - | 38 | Ned | | | | | | | | 9500 | CD | 0613 | 0730.5 | - | 539 | Tok | | 26,38 | 1609 | | В | | 44 | 2800 | SA | 1609 | 1619 | | (2325) | Ott | | | 1614 | | | | 52 | 545 | CD | 1610 | 1655 | - | 400 | Ned | | | | | | | - 1 | 460
200 | CD
CD | 1609
1615 | 1613.2
1618 | - | 2600
260 | NBS
Ned | | | | | | | | | | 0 | 1010 | | <u>400</u> | ned | | | | | | | į | | | | | | | | | | 0231 | | | | 34, 44 | 9500 | CD | 0232 | 0250 | - | 1470 | Tok | | | | | | | | 9400
3000 | CD | 0235
0231 | 0241.5
0252.5 | - | (721)
570 | Nag
Tok | | | 0846 | | | | [| | | | | | | | | | 0846
0847 | | | | 44
52 | 600
536 | CD | 0846
0848 | . 0854
. 0914 | - | 186
<u>343</u> | Ucc | | _ J | | | | | ~~ | 200 | CD | 0847 | 0848 | - | 400 | Pra
Ned | | | | | | | | | | | | | | | **▼-2** | Obs. | |--------------------------| | | | Nag | | Nag
Tok | | Nag
Tok | | Nag
Nag | | Mag | | Ott | | NBS
NBS | | | | Ott
NBS | | Ned | | NBS | | HHI
Ned | | Ott
Ucc | | Ned | | Ned | | нні | | Ott
NBS | | Cor | | Ott | | NBS
Cor | | Ned | | Ott
HHI | | Ucc
Ned | | Nag | | Ott | | Tok | | IOK | | | | | | Ott | | NBS | | Ott
Ucc | | Ned | | Ned | | Ned
Ned | | Pra | | Ned
Ucc | | Ned
Ott | | Ott
Ned | | Tok | | Ned | | Tok | | Ott | | Ott
Ned
NBS
Ned | | Ned | | | | Tok
Nag | | Nag
Tok | | Ucc
Pra
Ned | | Ned | | | | 2 | | | | | # TABLE IV | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Pos | ition | Imp. | Flare
Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | |-------------|--------------|--------------|----------------|-------------|-------------|----------|------------------------|--------------|------------|-----------|--------------|----------------| | April
05 | No Flar | e Patrol f | rom 0000 | - 0200 | | | | 43 | 0004 | 0013 | - | - | | 08 | 0342 | 0359 | | S 23 | E50 | 2 | | 47 | 0347 | 0353 | | | | 08 | 0616 | 0830 | 0622 | S19 | W02 | 3 | 18 | weepens to | | | | | | 09
11 | 1722 | 1850 | 1738 | S23 | E04 | 3 | 19 | | 0532 | 0544 | - | = | | | | | | | _ | | | | | | 0 | | | 12 | 1850 | 2010 | 1920 | S 25 | W73 | 2+ | | 51 | 1904.7 | 1916 | 3 | 200-100 | | 15 | 1410 | 1430 | _ | N25 | E90 | 2 | | 52 | 1400.6 | 1408 | 3 | 200-100 | | 16 | <u>1040</u> | 1300 | 1105 | N28 | E85 | 3 | 20 | 54 | 17
17 | 1006
1851 | 1118 | 1022 | N29
S 18 | E72
E73 | 3
1 - | 21 | 55
57 | 1846 | 1852 | 3 | 230-100 | | 1. | 100- | | | D | 2 | = | | u, | 1040 | 1000 | • | | | 17 No | o Flare F | atrol | | | | | | 58 | 2032 | 2039 | 3 | 180-100 | | 18 | 1310 | 1353 | 1323 | S 16 | E64 | 2 | | 59 | 1304 | 1312 | 3 | 220-100 | | May
09 | 2225 | 222 | | 522 | w 90 | 1- | | 64 | 2329.1 | 2334 | 3 | 300-100 | | 14 | 2325
1840 | 2338
1850 | . - | | w50 | 1 | | 67 | 1840.6 | 1843 | 3 | 200-100 | | 19 | | | 1700 May | | | | | 68 | 0007.5 | 0014 | 2 | 250-170 | | 21 | 1900 | 1935 | 1908 | S 12 | E63 | 1 | | 70 | 1915 | 1918 | 3 | 165-100 | | 29 | No Fla | re Report | ed | | | | | | 1424 | 1426 | | | | June
01 | 1252 | 1338 | 1256
| S 28 | w 35 | 2 | | | 1255.4 | 1303 | - | - | | 03 | 1040 | 1202 | 1047 | S18 | W18 | 3 | 22 | 77 | | | | | | 04 | 0859 | 0940 | 0902 | S17 | W27 | 2 | | | | | | | | 05 | 1326 | 1433 | 1329 | S17 | W43 | 2 | | | 1328.9 | 1333 | 3+ | 540-10 | | 15 | 0730 | 0840 | 0743 | S18 | E62 | 3- | 22 | | } | | | | | 19 | 0609 | 0811 | 0640 | S38 | E24 | 3 | 24 | | | | | | | 19 | 1609 | 1649 | 1613 | N20 | E45 | 2+ | 25 | 82 | 1615 | 1620 | 3 | 210- | | 22 | 0236 | 0257 | _ | N23 | E12 | 2 | | 85 | | | | | | 24 | 0838 | 0929 | 0850 | N22 | W14 | 3 | 27 | | | | | | 2.11-2 # MPORTANT RADIO EMISSIONS DURING 1957 | α | SPEC | TRAL OBS | ERVATIO | NS TYPE | īv | | SIN | GLE FRE | QUENCY F | RADIO EM | ISSIONS | | | |------------------|--------------|-----------|--------------|----------------|----------------|--|---------------------------|--------------------------------------|--|------------------|---------------------------------|---------------------------------|--| | Obs. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | Obsev.
Ref. | Freq. | Туре | Beg.
UT | End
UT | Max.
UT | Flux | Obs. | | | | 0050 | | | | 44 | 9400
3000
200 | CD
CD | 0054
0050
0054 | 0109
0148
0059 | : | (255)
501
120 | Nag
Tok
Tok | | | | | | | | Har. | 169
81
81 | CD
M
CD | 1016
1020
1050 | 1025
1033
1103 | - | 7 <u>0</u>
150
20 | Ucc
Cav
Cav | | | Har, 38 | 1711
1702 | 2000 | 3 | 580-100 | 38
44 | 2800
200
167 | SD
CD
CD | 1702
1703
1706 | 1712
1947
1856 | - | (700)
159
6300 | Ott
Cor
NBS | | | | | | | | | 2800
536
536
536 | SA
SD
SD
SD | 1346
1336
1339
1341 | 1353
1336.5
1339.5
1341.5 | • | (160)
65
85
65 | Ott
Pra
Pra
Pra | | | Har, 38 | 1729 | | | | 44 | 2800
460
167 | SA
CD
CD | 1729
1733
1734 | 1744
1856
1906 | - | (211)
1300
5600 | Ott
NBS
NBS | | | | | | | | | 2800
545
536 | CD.
CD
CD | 1339
1332
1333 | 1345
1340
1343 | - | (65)
200
175 | Ott
Ned
Pra | | | | | | | | | 3750 | CD | 0145 | 0146.5 | - | (98) | Nag | | | | | | | | | 167 | CD | 2313 | 2355 | - | 2100 | NBS | | | | | | | | | 9400
3750 | CD | 0249
0249 | 0306
0256.5 | - | (319)
(113) | Nag
Nag | | | | | | | | | 2980
536
200
200
200 | -
CD
CD
CD
CD | 1233
1229
1324
1332
1341 | 1245
1327
1325
1334
1342.5 | -
-
-
- | 250
235
550
500
600 | Ned
Pra
Ned
Ned
Ned | | | Har
38
Syd | | | | | | | | | | | | | | | Har, 38
Syd | | | | | | 9400 | SD | 0519 | 0520.5 | - | (23) | Nag | | | Syd | | | | | | 9400
3000 | SD
CD | 0407
0400 | 0407.3
0600 | - | (41)
234 | Nag
Tok | | | Har,38 | | | | | | 2800
460
200 | SD
CD
CD | 1550
1551
1552 | 1556
1554
1557 | - | (865)
1400
74 | Ott
NBS
Cor | | | Har, 38 | | | | | | 167 | SD | 1546 | 1547.9 | - | 510 | NBS | | | Har, 38 | | | | | | 200
167
167 | SD
SD | 1630
1827
2037 | 1630.5
2244
2038 | - | 80
460
1400 | Ned
NBS
NBS | | | Syd
Har, 38 | 0001
0029 | 0126 | 1 | | 52
Syd | 600
200
167 | CD
CD | 0001
0012
0001 | 0142
0052
0030 | - | 100
240
640 | Syd
Tok
NBS | | | Syd
Syd | | | | | | 3000
No.01 | CD | 0038 | 0047.4 | sion | 220 | Tok | | | Har,38 | | | | | | No other Radio Frequency Emission No other Radio Frequency Emission | | | | | | | | | | | | | | | 2980
545 | | 1024
1024 | 1028
1025 | - | 84
160 | Ned
Ned | | | | 0301 | | | | 44 | 9400
3000
200 | CD
CD
CA | 0302
0301
0250 | 0350
0401
0330 | - | (240)
800
630 | Nag
Tok
Tok | | | | | | | | | 1500
536 | SD
SD | 1036
1035 | 1038
1039.5 | - | (129)
300 | HHI
Pra | | | | 1955 | | | | 44 | 2800
200 | SD
CD | 1955
1954 | 2018
1957 | - | (176)
159 | Ott
Cor | | | | 0826
0826 | | A | | 44
34 | 9400
1500
545
200 | CD
CD
CD | 0828
0829
0830
0826 | 1445
0907
0930
0936 | -
-
- | (632)
(383)
1600
10 | HHI
HHI
Ned
Ned | | 211-1 0 ## TABLE IV | | | FLA | RE | | | \top | | | s | PECTRAL | OBSERVATI | ONS TYPE | |------------|--------------|-------------------------|--------------|----------------|-------------|----------|------------------------|------------------|------------|-----------|--------------|----------------| | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Positi | on I | mp. | Flare
Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | | June
27 | 2322
2330 | 2418
2427 | 2335
2335 | N20 W
N14 E | /62
32 | 1 | | <u>8</u> 8
88 | i | | | | | 28 | <u>0658</u> | <u>0950</u> | 0722 | N10 E | 27 | 3 | 28 | | | | | | | 28 | 1223 | 1315 | 1225 | N12 E | 21 | 2 | | | | | | | | 30 | 0924 | 1332 | 1025 | N09 V | v 03 | 2+ | 29 | | | | | | | July
02 | No Fla | re Reporte | ed. | | | | | 90 | | | | | | 02 | 0705 | 0805 | | N09 V | w 30 | 2+ | 31 | | | | | | | 03* | 0712
0830 | 0880
1145 | 0745
0840 | N14 V
N10 V | | 3+
3+ | 32
32 | 92
92 | 04 | 0521 | 1154
0802 | | | | 3 2+ | 33 | | | | | | | 15 | | | | | | | | | | | | | | 16 | 1742 | 2008 | 1804 | S 33 | W28 | 1+ | | 98 | | | | | | 17 | 0112 | 0148 | 0116 | NII | E30 | 2 | | 99 | 0125 | 0131 | 2 | | *This great flare has a double response with two distinct radio emission times, one starting at 0722, the other at 0831. 2. IV-3 | | SPE | CTRAL OF | SERVATIO | NS TYPE I | v | | SINGL | E FREQU | ENCY RA | DIO EMISSI | ONS | | |-------|----------------------|-----------|--------------|----------------|---------------------------------|---|--|--|--|--|---|---| | ıs. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | Obsev,
Ref. | Freq. | Туре | Beg.
UT | End
UT | Max.
UT | Flux | Obs. | | | | | | | | 9500
9500
9400
9400
2980
169 | CD
CD
ESD
CD
SD
ESA | 0632.8
0659.8
0633
0654
0659.5
0657 | 06\$4.3
07\$3.8
06\$5
07\$8
07\$3.5
06\$8 | 0633.2
0700.3
0633.2
0701 | 820
916
(279)
(504)
536
225 | Tok
Tok
Nag
HHI
Ned
Ucc | | | 1321 | | A | | 44 | 2800
600
545
536
450
450
450
231
231
200 | SD
ECD
FD
CD
ECD
ESD
CD
F
SA
CA | 1334.5
1332
1351.5
1331.5
1328
1336
1342
1334
1346
1333.5 | 1342.5
1346
1357
1543
1336
1342
1358
1340
1405
1339.5 | 1335.9
-
-
1330.5
1338.9
1355.7
1339
1358
1334 | (850)
<u>366</u>
<u>1300</u>
<u>362</u>
1300
<u>57000</u>
<u>33000</u>
550
550
300 | Ott Ucc Ned Pra NBS NBS NBS AOP AOP Osl | | | 1513 | 1523 | 3 | 580-200 | Har, 38 | 2800
201
169 | SD
ECA
ESA | 1506
1534.5
1534 | 15 99
15 35.5
15 35 | 1506.5
1535
- | (29)
70
243 | Ott
Cor
Ucc | | r, 38 | | | | | • | 2800
545
201
169 | SD
SD
CD
ESA | 1742.7
1743
1742
1747 | 17 47.7
17 45
17 50
17 48 | 1743.3
-
- | (165)
60
<u>70</u>
243 | Ott
Ned
Cor
Ucc | | | 2243 | 2315 | 3 | 580-300 | Har, 38 | 9400
450
450
200 | CD
CD
CD | 2243.5
2228
2303
2314 | 2247.5
2252
2313
2314.5 | 2243.7
2243.4
2306.6 | (30)
<u>26000</u>
<u>12000</u>
<u>250</u> | Nag
NBS
NBS
Hol | | | | | | | | 600
600
545
536 | CD
ESD
CD
CD | 0950
1007
1008
1006 | 0953
1010
1010
1014.5 | 1007 | 162
120
550
357 | Ucc
Mos
Ned
Pra | | | i | | | | | 231
200
169
169 | SD
CD
ECA | 1333
1331.5
1332
1334 | 13 34
13 33.5
13 35
13 37 | 1333.5
1333
-
- | 550
340
243
243 | AOP
Osl
Ucc
Ucc | | | 1801
1802
1813 | 1915 | 3 | 580-100 F | 26, 34, 44
Har, 27, 38
52 | 9400
2980
2800
545
450
600
167 | SD
CD
CA
CD
CD
-
CD | 1730
1801.5
1628
1801
1803
1851
1810 | 1748
1926.5
2108
1931
1917
1930
1849 | 1736
-
1828.5
-
1830.8
-
1832 | (336)
1275
(1080)
1200
1700
240
1000 | HHI
Ned
Ott
Ned
NBS
Ucc
NBS | | | | | | | | 231
169 | CA
CD | 0735
0725 | 1030 | 1012
- | <u>180</u>
<u>95</u> | AOP
IRS | | | 1409 | 1459 | 2 | 270-100 | Har, 38 | 9400
9400
169
169 | SD
SD
CA
CA | 1409
1437
1408
1438 | 1420
1456
1425
1505 | 1412
1448
- | (295)
(293)
240
240 | HHI
HHI
Ucc
Ucc | | r,38 | | | | | | 9400
536
450
231
200
167 | CD
CD
ECD
ECD
FCD
CD | 1435.5
1436
1435.4
1435
1435
1434.5 | 1443
1441.5
1438.4
1440.5
1441
1440 | 1436
1437
1435.9
1435.5
1438
1436.2 | (355)
200
2800
350
470
5600 | HHI
Pra
NBS
AOP
Osl
NBS | | r, 38 | 1720 | | | | 27 | 2800
450
200
167 | CD
ECD
CA
ECD | 1720.5
1720.9
1720
1720 | 1727
1725.9
1727
1726
 1721.1
1722.9
1723.5
1721.2 | (90)
340
190
5700 | Ott
NBS
Osl
NBS | | r,38 | | | | | į | 2800
450
200
167 | CD
ECD
SD
ECD | 1902
1903
1902
1901.8 | 1905.5
1908
1905.5
1907.8 | 1904.5
1905
1905
1904.4 | (44)
250
<u>800</u>
7000 | Ott
NBS
Osl
NBS | | rd | | | | | | 9500
3000 | SD
SD | 0229.3
0229.2 | 02 80.3
02 3 1 | 0229.7
0229.5 | 409
255 | Tok
Tok | | d | | | | | | 600
200 | CD
SD | 0427
0425.5 | 04 27.5
04 2 6 | 0427 | 61
240 | Syd
Tok | | | | | | | | 9400
231
231
169 | CD
CD
SD
CDF | 1117
1129
1150.8
1138 | 1207
1147
1154
1140 | 1124
-
1151.6 | (535)
350
260
189 | HHI
AOP
AOP
Ucc | | | | | | | | | | | | | | | **V**-4 TABLE IV | | | | FLARE | | - | | | S | PECTRAL O | BSERVATIO | NS TYPE II | | |------------|-------------|-------------|------------|----------|------|------------------------|-----------|------------|-----------|--------------|----------------|---| | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Position | Imp. | Flare
Serial
No. | Event No. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | o | | July
21 | 0633 | 0750 | 0658 | N30 E15 | 2+ | 36 | 102 | | | | | | | 21 | 1320 | 1442 | 1337 | N29 E12 | 3 | 37 | 103 | | | | | | | 21 | 1517 | 1526 | _ | S25 E09 | 1+ | | | | | | | | | 21 | 1737 | 1752 | 1745 | N22 W12 | : 1 | | 105 | 1746.4 | 1752 | 3 | 200-100 | н | | 21 | 2215 | 2302 | ~ | N20 W1 | 5 1- | | 106 | | | | | | | 22 | 0953 | 1150 | | N15 E51 | 3 | 38 | 108 | | | | | | | 22 | 1240 | <u>1505</u> | 1303 | S 23 E07 | 3 | 39 | | | | | | | | 24 | 1712 | 2025 | 1811 | S24 W2 | 7 3 | 40 | 109 | | | | | | | 27 | 0637 | 0820 | 0703 | S24 W6 | l 2+ | 41 | | : | | | | | | Aug.
01 | 1352 | 1437 | 1420 | S35 E04 | 1 | | 111 | | | | | | | 02 | 1432 | 1446 | 1436 | N26 E32 | 2 2 | | 112 | 1437.9 | 1442 | 3 | 210-100 | н | | 03 | <u>1721</u> | 1735 | 1723 | N26 E1 | 7 1+ | | 114 | 1723.4 | 1729 | 3 | 160-100 | H | | 05 | 1900 | <u>1954</u> | 1905 | N26 W0 | 8 1+ | | 115 | 1906.8 | 1910.3 | 3 | 165-100 | Н | | 06 | No Flai | re Report | ed: | | | | 116 | 0234 | 0246.2 | 2 | | 8 | | 06 | 0423 | 0433 | 0426 | N25 W2 | 2 1- | | 117 | 0431 | 0438 | 2 | | s | | 08 | 1116 | 1257 | 1134 | N27 W5 | 7 2+ | 42 | | | | | | | | | | | | | | | | | | | | | | ī | SPEC | TRAL OBS | ERVATION | S TYPE I | v | | SIN | GLE FRE | QUENCY I | RADIO EMIS | SIONS | | |------|------------------------------|-----------|--------------|----------------|-------------------------------|---|--|--|---|--|---|---| | Obs. | Beg.
U T | End
UT | Max.
Int. | Freq.
Range | Obsev.
Ref. | Freq. | Туре | Beg.
UT | End
UT | Max.
UT | Flux | Obs. | | | 2408 | | | | 44 | 9500
3000
1420
460
200 | CD
CD
CD
CD | 2352
2408
2357
2346
2330 | 2808
2818
2405.2
2620
2330.7 | - | 600
504
239
610 | Tok
Tok
Syd
NBS
Tok | | | 0707
0716
0717 | 0826 | B
3 | | 44
27
52 | 9500
536
200
200
200 | CD
CD
CD
CD
CA | 0707
0707
0717
0717
0730 | 0742.2
0834
0827
0732
0800 | -
-
-
- | 622
280
350
1500
750 | Tok
Pra
Ned
Tok
Tok | | | 1222 | | В | | 44 | 2800
545
536
460
200 | SD
CD
CD
CD
CD | 1222
1223
1221
1222
1220 | 1237
1231
1339
1345
1234 | -
-
- | (355)
600
400
1200
350 | Ott
Ned
Pra
NBS
Ned | | | 0945 | | | | 44 | 2980
600
545
169 | SD
SA
CD
SA | 0953
0952
0955
1006 | 1002.5
1007
1005
1101 | - | 119
90
90
135 | Ned
Ucc
Ned
Ucc | | | 0015 | | | | 44 | 9500
3750
3000
2800
200 | SD
SD
CD
SD
CA | 0015
0015
0015
0015
0030 | 0036
0018
0038
0021
0105 | 0016.5
0016.3
0016.5
0017
0047 | 1106
(305)
630
(180)
400 | Tok
Nag
Tok
Ott
Tok | | | | | | | | 9500
2000 | CD
F | 0706,7
0721,6 | 0746.5
0726.6 | 0712
0724.8 | 519
251 | Tok
Nag | | | 0832
0832
0849
0837 | 0914 | B
3 | | 44
16, 26, 34
27
52 | 9500
9400
9375
3000
2980
2000 | SD
CD
CD
CD
CD-
ECD- | 0733
0729
0725
0733
0726.5
0726 | 0930
0800
0803
0757.5
0816 | 0742
0841
-
-
-
0809.5 | 710
(2380)
600
285
585
(1690) | Tok HHI Gor Gor Ned Nag | | | | | | | | 1000
600
9400
9375
3750
2000
600
600
545
545
231
210
200
200
200
178
169
169 | F-CD FD CA CD CD CD CD CD CCD CCD CD CD CD CD CD C | 0723
0722
0750
0831
0831.5
0832
0831
0836.7
0824
0835
0805
0832
0849
0901
0835
0802.5
0835
0836.5 | 0823
0800
0830
-
0851.5
0855
0855
0856.7
0846
0945
0913
0905
0905
1030
0804
1040
0841
0840
1040 | 0809.7
0810
 | (7570) 113 700 1030 (2960) 2320 (763) 928 (8200) 312 324 850 5200 600 1200 550 920 3400 1368 1026 400 | Nag Ucc AOP Tok Nag Gor Nag Nag Ucc Ned Ned AOP Sim Ned Hir Osl Ned Kis Kis Ucc | | | 2019
1801
1739
1753 | 1825 | 3
A | 580-100 | 44
Har, 27, 38
44
52 | 231
9500
3000
3000
545
545
536
169
2800
167
9400
2800
545
200
167 | CD CD CD CD CD CD CCD CCD CCD CCD CCD C | 0537
0536.7
0607.3
0535.5
0607.5
0606
0537
2019
2016
1740
1751
1753
1754 | 0541,5
0550
0610
0539
0609
0611 5
0538
2137
2047
1827
1811
1809
1825
1826 | 1114.6
0538.7
0539
0608.7
-
0608
2043
2036
1748
1757.3
-
1818 | 400
511
359
307
2900
500
(300)
60
(627)
(350)
1000
850
1700 | Tok Tok Tok Ned Pra Ucc Ott NBS HHI Ott Ned Ned NBS | | Syd | | | · · <u>-</u> | | | 3000
2000
1000
200
200
167 | CD
ECD
CD
CD
ECD
ECD | 0114.5
0114
0114
0113.8
0118
0113.9 | ง118
0116
9118
0115.6
0120
ง115.9 | 0115
0115.3
0115.5
0114.5
- | 269
34
(24)
900
390
1200 | Tok
Nag
Nag
Tok
Hir
NBS | J. II-3 ## TABLE IV | Gr.
Day | Beg.
UT | Find | LARE | | | | | SI | ECTRAL OB | SERVATION | IS TYPE | |-------------|-------------|-------------|-----------------|-----------------|--------------|------------------------|--------------|------------|-----------|--------------|----------------| | | | End | | | | | | | | | | | | | UT | Max.
UT | Position | Imp. | Flare
Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | | Sept.
02 | 0409 | 0445 | 0412 | N14 W58 | 1+ | | 137 | 0423 | 0431 | 2 | | | 02 | 1357 | 1346 | 1303 | N10 W26 | 2 | | 138 a | | | | | | 02 | <u>1313</u> | 1830 | 1351 | S34 W 36 | 3 | 56
: | 138 b | | | | | | 03 | 0037 | 0116 | 0049 | N24 W24 | 1 | | 140 | 0035.8 | 0041 | 3 | 580-100 | | 03 | 1412 | <u>1727</u> | 1429 | N23 W 30 | 3 | 58 | 142 | | | | | | 06 | <u>0751</u> | 0900 | 0803 | N23 W 66 | 3 | ł 59 | | | | | | | 08 | 1627 | 1634 | _ | S13 E25 | 1- | | 145 | 1632.3 | 1638 | 3 | 190-10 | | 09 | 0755 | 0855 | 0813 | N12 E22 | 3 | 60 | | | | | | | 10 | 0223 | 0300 | 0250 | N14 E16 | 3 | 61 | | | | | | | 11 | 0140 | 0200 | 0142 | N15 E90 | 1- | | 147 | 0150 | 0200.5 | 2 | | | 11 | 0236 | 0722 | 0300 | N13 W02 | 3 | 63 | 148 | | | | | | 12 | 0703 | 0740 | 0713 | N09 W 15 | 3 | 64 | 150 | 0712 | 0721 | - | - | | 12 | 1510 | 1638 | 1516 | N11 W18 | 3 | 65 | 152 | 1516 | 1628 | 3+ | 580- | | | <u></u> | 2000 | -0.0 | W10 | 3 | | | | - 100 | | | 2.11-6 0 | \Box | SPI | CTRAL O | BSERVATIO | ONS TYPE | ıv | | SINC | GLE FREC | UENCY R | ADIO EMISS | SIONS | | |-------------------|--------------------------------------|-------------|--------------|----------------|---|---|---|--|--|--|---|---| | bs. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | Obsev.
Ref. | Freq. | Туре | Beg.
UT | End
UT | Max,
UT | Flux | Obs. | | ı r,2 6,38 | | | | | | 9500
9400
3750
3000
2000
200
167 | CD
ECD
ECD
CD
SD
CD
ECD | 0126.8
0125.5
0126
0126.7
0127
0127
0127 | 0129.8
0129.5
0130
0129.2
0130
0128
0136.1 | 0128.5
0127.1
0127.4
0127.5
0128.6
0127
0127.9 | 1689
(1840)
(1700)
1400
(550)
1000
1200 | Tok
Nag
Nag
Tok
Nag
Hir
NBS | | | | | | | |
231
200
169 | CD
CD | 0812
0820
0820 | 0832
0827
0824 | 0822
-
- | 140
150
<u>110</u> | AOP
Ned
Ucc | | | | | | | | 1500
600 | SD
ESD | 1147
1229 | 1152
1229,5 | 1149.5
- | (113)
190 | HHI
Ucc | | | 0920
0920
0930 | | B
3 | | 44
16, 26, 34
27, 52 | 9400
2980
1500 | CD
CD | 0915
0943
0900 | 1147
1023
1340 | 0950
-
1001 | (693)
1192
(692) | HHI
Ned
HHI | | r 26 38 | | | | | | 2800
450
201
167 | SD
ECD
ECD
ECD | 2017.7
2017.4
2022
2021 | 2022.7
2021.4
2027
2025 | 2019.5
2017.9
2024.5
2023.6 | (760)
7100
450
5700 | Ott
NBS
Cor
NBS | | | | | | | | 9400
3000 | ECD
CD | 0550
0550.5 | 0553
0555 | 0551.2
0552 | (305)
362 | Nag
Tok | | | | | | | | 9400
231
210
200 | CD
F
CD
CD | 1036
1037
1039
1039 | 1050
1048
1044
1044 | 1038
1043
1040 | (298)
<u>550</u>
224
<u>230</u> | HHI
AOP
Sim
Ned | | ļ | | | | | | 9400
169 | CD
ESA | 0622
0704 | 0638
0705 | 0625
- | (112)
200 | Nag
Ucc | | r, 26,38 | 2209
2212
2214 | 2343 | 3 | 580-100 | 44
Har, 38
37 | 9400
3750
2800
2000
1000
600
450
450
167
167 | ECD
ECD
SD
ECD-
CD
ECD-
CD
ECD
CD | 2209.5
2209
2210
2210
5 2211
2214
2211.9
2220
2213.7
2223 | 2216.5
2217
2220
2216
2243
2240
2219.9
2515
2221.7
2240 | 2213
2213.1
2213.7
2213.7
2213
2215
2214.6
2235
2215.2
2233 | 1170
(538)
(480)
(619)
(433)
315
1900
420
5000
810 | Nag
Nag
Ott
Nag
Nag
Syd
NBS
NBS
NBS | | | 0548 | | | | 34. 44 | 9500
3000
2980
1000 | CD
CD
CD
ECD- | 0546.7
0545.5
0548
0548 | 0547.3
0549
0600
0728 | 0548.3
0549
-
0549 | 696
569
426
(285) | Tok
Tok
Ned
Nag | | : | | | | | | 600
545
200
200
169 | CA
CA
CD
CA
CD
CA | 0557
0548
0540
0548
0548 | 0730
0730
0640
0552
0552 | 0654
-
0615
0549.5 | 455
4000
830
1600
350 | Syd
Ned
Tok
Tok
Ucc | | | 1301
1302
1302
1303
1309 | <u>1600</u> | 3
B | 580-100 | Har. 38
44
16. 26. 34
27
52 | 9400
2800
450
231
200
200
200
169
169 | CD
SD
CA
CD
ECD
CD
CD
CA | 1302
1301
1300
1303
1300
1303
1320
1303
1315 | 1552
1406
1600
1318
1315
1316
1420
1315
1317 | 1315.5
1338
1307
1310 | (900)
(3900)
14000
200
1200
1200
300
300 | HHI Ott NBS AOP Jod Ned Ned Ucc Ucc | | | | | | | | 231
231
231
169 | CA
CD
CA
SA | 1331
1341
1354
1342 | 1341
1354
1430
1404 | 1337
-
1416 | 1200
1400
1600
300 | AOP
AOP
Ucc | | | | | | | | 9400
9375
3000
2980
536
231
206
200
200
169 | CD
CA
SD
CD
ECD
CD
F
ECD
CD
ECD
ECD | 0948
0949
0949
0949
0949
0950
0949
0945
0949
0952.5 | 1013
0958
0952
0956
0958
0957.9
0958
0955
0955 | 0950
0950
0950
-
0950
-
0954
0950
-
0954.5 | (545) 783 332 605 505 1600 590 2000 650 330 | HHI Gor Gor Ned Pra AOP Gor Jod Ned Osl | | | | | | | | 2800
169
169 | CD
CAF
CAF | 1256
1253
1323 | 1309
1255
1327 | 1301
-
- | (204)
330
180 | Ott
Ucc
Ucc | 2.W-\$5 (2) TABLE IV | | | F | LARE | | | Flare | | | SPECTRAL C | BSERVATIO | ONS TYPE | II | |-------------|-------------|-------------|------------|-----------------|------|---------------|--------------|------------|------------|--------------|----------------|----| | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Position | Imp. | Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | (| | Aug.
10 | 0125 | 0142 | 0129 | N26 W71 | 1 | | 121 | 0129.4 | 0133.8 | 3 | 330-100 | н | | 21 | <u>0745</u> | 0844 | 0756 | N24 E20 | 3 | 43 | | | | | | | | 23 | 1126 | 1300 | 1154 | N16 W1 | 7 3 | 44 | | | | | | | | 28 | 0913 | 1404 | 0955 | S 31 E33 | 3+ | 45 | 125 | | | | | | | 28 | 2010 | 2405 | 2024 | S29 E30 | 3 | 46 | 126 | 2021.9 | 2026 | 3 | 330-100 | н | | 29 | 0545 | 0715 | 0555 | N24 E35 | 2+ | 47 | | | | | | | | 29 | 1031 | 1201 | 1052 | S 25 E20 | 3 | 48 | | | | | | | | 30 | 0620 | 0804 | 0600 | N26 E22 | 2+ | 49 | | | | | | | | 30 | No Flai | re Reporte | ed | | | | 130 | 2213.7 | 2217 | 3 | 300-100 | На | | 31 | <u>0521</u> | 1048 | 0727 | S32 W02 | : 3 | 50 | | | | | | | | 31 | 1257 | <u>1557</u> | 1312 | N25 W 02 | 3+ | 51 | 132 | | | | | | | 31 | 1338 | 1455 | 1353 | N12 W02 | 2 2+ | 52 | | | | | | | | Sept.
01 | 0946 | 1030 | 0952 | N12 W 09 | 3 | 53 | 135 | : | | | | | | 01 | 1225 | 1437 | 1302 | N14 W15 | 5 3 | 54 | | | | | | | 2:II-5 D 2. | | SP | ECTRAL O | BSERVATE | ONS TYPE | IV | | SINC | SLE FRE | QUENCY R | adio emis | SIONS | | |-----------|------------------------------|-----------|--------------|----------------|---------------------------------|--|---|--|--|---|--|---| | Obs. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | Obsev.
Ref. | Freq. | Туре | Beg.
UT | End
UT | Max.
UT | Flux | Obs. | | Syd | | | | | · | 9500
3000
2000 | CD
CD | 0412
0411
0410 | 0452
0424.5 | 0419
0420
0419 | 501
437
(23) | Tok
Tok
Nag | | | 1257
1257 | | Α | | 44
34 | 9400
2980
2800
600
536
231
169
81 | SD
CD
SD
ECA
CA
SA
CA
CD | 0408
1255
1257
1258
1258
1256
1300
1311
1256 | 1336
1342
1304
1302
1610
1502
1329
1436 | 1302
-
1300
-
1300
1324 | (333)
429
(56)
150
240
700
540
(1300) | Nag HHI Ned Ott Ucc Pra AOP Ucc Cor | | | 1310 | | | | 16, 26
27, 52 | 2800
2800
600
169 | SD
SD
SA | 1317.3
1321
1339
1331 | 1321.3
1326.5
1353
1415 | 1319
1324
- | (30)
(40)
102
<u>540</u> | Ott
Ott
Ucc
Ucc | | Har,38 | 0038 | | | | 44
- | 9400
3000
1000
545
450
200
167 | CD
CD
CD
CD
ECD
CD
CD | 0033
0035
0034
0038
0036
0038 | 0051
0052.5
0042
0039.5
0041.9
0050
0040.5 | 0045
0037
0041
-
0036
0039
0039.4 | (600)
462
534
300
4500
420
4500 | Nag
Tok
Nag
Hol
NBS
Tok
NBS | | | 1417 | | | | 16, 44 | 9400
2800
1500
545
450
231
167 | SD
SD
SD
CD
CD
ECD
ESD | 1415
1417
1420
1444
1424
1455.2
1455.1 | 1537
1442
1440
1444.5
<u>1431</u>
1456
1455.9 | 1423
1424
1425
-
1428
1455.4
1455.2 | (515)
(1350)
(509)
700
400
320
3700 | HHI
Ott
HHI
Ned
NBS
AOP
NBS | | | | | | | | 9500
9400
9375
3750
3000
2980
2000 | CD
SD
ECD
CD
SD
CD
CD-F | 0801
0756
0758
0753
0751
0753
0756 | Q804.8
Q850
Q800
Q805
Q804
Q805
Q819 | 0801.5
0818
0758
0802
0800 | 751
(588)
730
(365)
430
380
270 | Tok
HHI
Gor
Nag
Gor
Ned
Nag | | Har,38 | | | | | | 200
167 | CD
CD | 1630.5
1634 | 1632.5
1636.3 | -
1635 | 180
980 | Ned
NBS | | | | | | | | 9400
2980
2980 | SD
SD
SD | 0756
0801
0808 | 0825
0803
0820 | 0814
-
- | (318)
267
270 | HHI
Ned
Ned | | | | | | | | 9500
3000 | SD
SD | 0226
0223 | 0231
0258 | 0228
0228 | 481
349 | Tok
Tok | | Syd | | | | | | 9500
3000
2000 | SD
SD
CD | 0141.3
0141.2
0141 | 0142.3
0142.2
0142.5 | 0141.5
0141.5
0141.9 | 453
376
20 | Tok
Tok
Nag | | | 0244
0305
0331
0300 | 0722 | 3 | | 16, 44
Syd
27
52 | 9500
3750
3000
2000
1420
1000
545
200 | CA
CA
CA
CA
CA
CA
M
CD
CD | 0247
0243
0244
0243
0244
0235
0255
0300 | 0457
0413
0359
0353
0350
0345
0348
0325 | 0305
0304
0300.7
0304
0304
0320
- | 584
(373)
1110
(564)
604
(8200)
30000
520 | Tok
Nag
Tok
Nag
Syd
Nag
Hol
Tok | | Har
26 | | | | | | 9500
9400
2980
545
536
208
200 | CD
CD
CD
CD
CD
CD
CD | 0708
0707
0708
0709
0705
0709
0708 | 0714
0721
0715
0720
0727.5
0714 | 0709
0709
-
-
0712
0713
0709 | 697
(450)
443
300
530
366
1880 | Tok
HHI
Ned
Ned
Pra
Mos
Hir | | Har,38 | 1515
1500
1516 | 2025 | 3 | 580-100 | Har, 27, 38
16, 34, 44
37 | 9400
2980
2800
1500
600
536
450
201
200
167
81 | SD
CD
-
CD
ECD
ECD
CD
ECD | 1514
1515
1514
1515
1516
1513
1515
1515
1515 | 1525
1526
1532
1543.5
1300
1644.5
2030
1728
1645
1526
1531 | 1516
-
1515
1516
-
1528
-
1528
1519 | (1150)
1220
(850)
(627)
430
700
7500
440
1050
2400
350 | HHI
Ned
Ott
HHI
Ucc
Pra
NBS
Cor
Osl
NBS
Cav | 2. II-6 2 # TABLE IV | | | F | LARE | | | | | SPI | ECTRAL OF |
SERVATION | S TYPE II | |-------------|--------------|-----------|--------------|----------|--------------|------------------------|--------------|------------|-----------|--------------|----------------| | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Position | Imp. | Flare
Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | | Sept.
12 | 2145 | 2222 | 2150 | S17 W76 | 1 | | 153 | 2150.4 | 2153 | 3 | 300-100 | | | | | | | | Ī | | | | | | | 13 | 1410 | 1508 | 1422 | N09 W32 | 2 | | 155 | | | | | | | | | | | | | | | | | | | 15 | <u>2030</u> | 2110 | 2042 | N11 W64 | 2 | | 158 | 2044.5 | 2049 | 3 | 250-100 | | 16 | 1451 | 1709 | 1459 | N08 E48 | 2+ | 66 | 16 | 2242 | 2304 | 2245 | N11 W77 | 1+ | | 159 | 2248.6 | 2254 | 3 | 220-100 | | | | | | | | | | | | | | | 17 | 0416 | 0945 | 0807 | N23 E28 | 2+ | 67 | | | | | | | 18 | 0624 | 0720 | 0633 | N23 E13 | 2+ | 68 | | | | | | | 18 | 1658 | 2110 | 1740
1840 | N23 E08 | 3+ | 70 | 161 | | | | | | 19 | 0350 | 0555 | 0410 | N23 E02 | 2 3+ | 71 | 162 | | | | | | | | | | | | | | | | | | | 19 | 0744 | 1200 | 0800 | N23 E01 | l 2 + | 72 | | | | | | | 20 | 2117 | 2222 | 2123 | N07 W1 | 4 2 | | 165 | 2120.9 | 2123 | 3 | 330-10 | | | | | | | | | | | | | | | 21 | 1330 | 1510 | 1335 | N10 W0 | 6 3 | 74 | 168 | | | | | | | | | | | | | | :
: | | | | | | | | | | | | | | | | | | 22 | <u>124</u> 8 | 1458 | | N07 W3 | 7 2+ | 24 | 0224 | 0307 | 0227 | N15 E9 | 1 1- | | 171 | 0212 | 0226 | | | | 24 | 0507 | 0522 | 0513 | N15 E9 | 0 1+ | | 172 | 0504 | 0507 | | | | 26 | 1832 | 1850 | 1836 | S 26 E2 | 9 1 | | | | | _ | | 2.11-7= 0 | | SPI | ECTRAL O | BSERVAT | IONS TYPE | īV | | SING | LE FREQ | JENCY RA | DIO EMISSI | ONS | | |------------|----------------------|-----------|--------------|----------------|-----------------------------|---|-----------------------------------|--|--|---|---|--| | Obs. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | Obsev.
Ref. | Freq. | Type | Beg.
UT | End
UT | Max.
UT | Flux | Obs. | | | 1927
1948
1926 | 2015 | 3 | 580-100 | Har, 38
16, 27
52 | 450
201
167
167 | CA
ECD
ECD
CA | 1915
1920
1926.3
1927 | 2430
2047
1927.1
2435 | 2028
-
1926.8
2200 | 450
384
2000
4000 | NBS
Cor
NBS
NBS | | : | | | | | | 2800
2800 | CD
CD | 1700
1705.5 | 1706
1708.5 | 1702
1706.3 | (120)
(77) | Ott
Ott | | Syd | | | | | | 9500 | CD | 0345 | 0435 | 0335 | 499 | Tok | | | 0150 | | | | | 9500
3000 | CD | 0536
0535.3 | 05 49
05 43 | 0538
0536,5 | 538
800 | Tok
Tok | | | 2150 | | | | 44 | 9500
2800
1420
600
450 | CD
SD
SD
CD
ECD | 2151
2150
2152
2152
2151.7 | 2300
2300
2155.5
2156.2
2152.7 | 2153
2153
2153
2154
2152.1 | 1230
(1000)
421
316
5200 | Tok
Ott
Syd
Syd
NBS | | : | | | | | | 9500
9400
2000
1000 | ECD
ECD
CD
F | 0151.8
0151.8
0151.9
0151.9 | 0160.3
0154.8
0154.9
0452.9 | 0152
0152,1
0152,8
0152,8 | 701
(166)
92
305 | Tok
Nag
Nag
Nag | | | | | | | | 9500
3000
1420 | CD
CD | 0421
0421
0424 | 0 436
0 441
04 27 | 0424
0427
0427 | 687
435
258 | Tok
Tok
Syd | | | 2141 | | | | 44 | 9500
9400
3750 | CA
CD
CD | 2142
2200
2158 | 23 48
23 07
2 306 | 2203
2203
2203 | 1134
(420)
(410) | Tok
Nag
Nag | | | | | | | | 9500
9400
209 | CA
SD
CA | 0615
0634
0627 | 07 05
06 57
06 31.5 | 0643
0636
0631 | 631
(42)
46 | Tok
Nag
Bju | | | 0237 | · | | | 44 | 9400
3750
3000
2000
1420
545 | F
CA
F
CD | 0238
0238
0239
0248
0251
0253 | 0256
0256
0319
0258
0259
0318 | 0241.4
0254.4
0254
0255
0255 | (490)
(478)
1100
(339)
252
300 | Nag
Nag
Tok
Nag
Syd
Hol | | Har,38 | 1636
1651
1646 | 2013 | 3 : | 580-100 Ha | 26, 34, 44
r, 38
, 52 | 200
2800
450
167 | SID
CID
CID
ECID | 0248
1644
1647
1646 | 03 49
17 35
17 30
18 15 | -
1651
1656
1700 | 2000
(4000)
14000
3700 | Hir
Ott
NBS
NBS | | Har,38 | | | | - ·, | . •2 | 9500
9500
2800
1420
450 | ECD
CA
SD
SD
ECD | 2145
2159
2145
2146
2144.9 | 2151,3
2251
2150
2150
2145,4 | 2146
2230
2145.8
2146
2145 | 1042
577
(230)
300
1300 | Tok
Tok
Ott
Syd
NBS | | | | | | | | 2980 | SID | 1211.5 | 1314.5 | - | 306 | Ned | | | | | | | | 9400
3750
2000 | ECD
ESD | 0622.4
0622.4
0622.5 | 0627.9
0627.9
0027 | 0623.4
0623.4
0623.6 | (785)
(1640)
(405) | Nag
Nag
Nag | | Syd
Syd | | | | | | 2000
1420
600
545
450
167 | SD
CD
F
CD
ECD
ECD | 2217
2213
2218
2219
2217,1
2212 | 2419
2419
2430. 5
2420
2218.4
2237.4 | 2217.9
2213
2219
-
2217.8
2214 | (75)
183
98
120
1100
1600 | Nag
Syd
Syd
Hol
NBS
NBS | | Syd
Syd | | | | | | 9500 | CD | 2323 | 2340 | 2327 | 495 | Tok | | | 1504 | | | | 44 | 9400
1500
450
200
169 | CD
SD
CD
ESD
ECD | 1502.5
1502
1503
1501.5
1503 | 1506
1507
1504.2
1507.5
1507 | 1504
1503.3
1503.6
1503 | (283)
(165)
570
130
<u>150</u> | HHI
HHI
NBS
Osl
Ucc | | | 0754 | | | | 44 | 9400
9375
2980
536
200 | SD
ESD
CD
CD
CD | 0754
0757
0754
0755
0754.5 | 0825
0806
0770
0814
0804.5 | 0758
0804
-
0758 | (355)
596
314
230
300 | HHI
Gor
Ned
Pra
Ned | | ar,38 | | | | | | 167 | ECD | 2119.1 | 2120.6 | 2120 | 2800 | NBS | | | | | | <u></u> _ | | 9400
206
206 | SD
ECD
EDF | 0913
0923
0928 | 0951
0926
1200 | 0921
-
0944 | (325)
374
432 | HHI
Gor
Gor | | V7 0 | | | | | | | | | | <u> </u> | | | 2.11-8 2 2.7/~? | | | | ARE | | | | Flare | | | | BSERVATION | | |-------------|--------------|--------------|--------------|------------|-------------|------|---------------|--------------|--------------|--------------|--------------|----------------| | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Posi | tion | Imp. | Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | | Sept.
26 | 1907 | 2345 | 1952 | N22 | E15 | 3 | 75 | 173 | | | | | | 30 | 1657 | 1750 | 1706 | N25 | w37 | 3 | 76 | 176 | | | | | | Oct.
09 | 0340 | 0500 | 0355 | S 38 | W14 | 3 | 77 | 179 | 0402 | 0422 | - | - | | 13 | 0534 | 0641 | 0539 | N12 | E40 | 2+ | 78 | 181 | | | | • | | 15 | No Flar | e Patrol l | between 2 | 000 and | 2400 | | | | | | | • | | 16 | 0152 | 0202 | 0152 | S 25 | E21 | 3 | 79 | 185 | | | | | | 16 | 0413 | <u>0500</u> | 0425 | S 26 | E20 | 3 | 80 | | | | | | | 18 | No Flai | e Patrol l | between 2 | 000 and | 2300 | | | | | | | | | 19 | <u>0603</u> | <u>0920</u> | 0639 | S 24 | W25 | 3 | 81 | | | | | | | 20 | No Flai | e Patrol I | between 0 | 000 and | 0300 | | P | | | | | | | 20 | 1637 | 1804 | 1642 | S 26 | W4 5 | 3+ | 82 | 190 | 1650.9 | 1658 | 3+ | 350-100 | | 20 | No Flar | e Patrol l | between 1 | 200 and | 2215 | | | | 2148.7 | 2150 | 3 | 190-100 | | 21 | 1212 | 1314 | 1218 | S 25 | W52 | 3 | 83 | | | | | | | 23 | 0621 | 0645 | _ | | W77 | 3 | 84 | | | | | | | 23 | 2222 | 2236 | - | S18 | W79 | 1 | | 195 | 2204
2226 | 2205
2227 | 1
1 | | | 24 | <u>2314</u> | <u>2326</u> | 2319 | | W42 | 1- | | 196 | 2310 | 2315 | 1 | • | | 25 | 2339
1500 | 2406
1612 | 2240
1505 | N27
N12 | W44
E03 | 1 2 | | 197 | 2341 | 2358 | 1 | | | | | | | | | _ | | | | | | , | | 26 | 0753 | 0833 | 0803 | N12 | w 10 | 2 | | | | | | | | 31
Nov | No Flai | e Reporte | ed | | | | !
! | 203 | 2119 | 2121 | 3 | 210-130 | | Nov.
02 | 0904 | 0955 | 0918 | S 21 | W 16 | 2+ | 86 | | | | | | | | SPEC | CTRAL OB | SERVATIO | ONS TYPE | īV | - | SING | GLE FREG | UENCY R | ADIO EMIS | SIONS | | |--------------|----------------------|-----------|--------------|----------------|----------------------------|---|---|--|--|--|---|--| | Obs. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | Obsev.
Ref. | Freq. | Туре | Beg.
UT | End
UT | Max.
UT | Flux | Obs. | | Har,38 | 2145 | | | | 44 | 9500
9400
2800
1420
600
200
167
167 | CD
CD
CD
SD
CD
CD
ECD
CD | 2146
2153.7
2145
2154
2149
2151.7
2148.7
2153 | 2156
2157.7
2200
2155.5
2156.5
2153.7
2152.7
2415 | 2154
2153.7
2154
2154
2150
2152
2151.8
2321 | 860
(380)
(105)
278
178
2500
3200
320 | Tok
Nag
Ott
Syd
Syd
Hir
NBS
NBS | | | 1418
1419 | 1606 | 3 | 580-400 | 44
Har, 27, 38 | 9400
1500
545
545
536
450
200
167 |
CD
CD
CA
ECD
CD
CD
ECD | 1415
1415
1414
1418
1412
1427
1417.5 | 1450
1455
1418
1608
1627.5
1611
1419 | 1418
1420
-
-
-
1454
1418
1417.9 | (542)
(266)
240
5500
605
6500
225
1700 | HHI
HHI
Ned
Ned
Pra
NBS
Osl
NBS | | Har,38 | | | | | | 2800
450
200
167 | SD
ECD
CD
ECD | 2041
2041
2041
2044.7 | 2046
2056
2043
2047.2 | 2042
2042
2042
2045,9 | (365)
800
750
3000 | Ott
NBS
Hir
NBS | | | | | | | | 9400
2800
450
200
167 | SD
SD
ECD
CD
ECD | 1520
1519
1520,2
1549,5
1549,6 | 1545
1525
1521.6
1551.5
1550.9 | 1521
1521
1520.2
-
1550.1 | (724)
(260)
320
300
3500 | HHI
Ott
NBS
Ned
NBS | | Har, 38 | | | | | | 9400
3750
2800
2000
545
167 | ESD
ESD
SD
ESD
CD
ECD | 2243
2243
2244
2243.8
2244
2248.5 | 2246
2246.5
2249
2246.8
2245
2251.2 | 2244.4
2244.7
2245
2245
-
2249.4 | 452
(476)
(425)
(320)
300
3500 | Nag
Nag
Ott
Nag
Hol
NBS | | | | | | | | 9500
3000
200 | CD
CD | 0440
0440.5
0440.3 | 0450
0445.3
0442 | 0443
0441
0441.2 | 776
427
390 | Tok
Tok
Tok | | | 1804
1810
1805 | 2428 | 3 | 580-10 | 44
⁰ Har, 38 | 9500
2800
450
450
201
167 | SD
CD
CD
ECD
E
CA | 0631
1821
1807
1910
1808
1820 | 0711
1901
1910
1930
2302
2450 | 0632
1825
1823
1915
-
2100 | 551
(275)
980
2000
356
2000 | Tok Ott NBS NBS Cor NBS | | | 0400
0427 | 0730 | 3 | | 16, 44
Syd | 9400
3750
3000
2000
1000
200
200 | CD
CD
CD
CD
F
CA
CD | 0359
0359
0401
0402
0405
0408
0411.5 | 0419
0410
0411
0410
0416
0638
0413 | 0406
0406
0406
0406
0409
0510
0411.8 | (1240)
(1080)
1410
(254)
305
580
1420 | Nag
Nag
Tok
Nag
Nag
Tok
Tok | | | | | | | | 169
169
169 | CAM
CAM
CAM | 0754
0828
0845 | 0759
0834
0858 | : | 370
370
340 | Ucc
Ucc
Ucc | | Har
26,38 | | | | | | 9500
545
450
167 | ECD
CD
ECD
FD | 2119
2122
2119
2120.2 | 2155
2127.5
2126
2123.3 | 2120
-
2119
2121.3 | 887
300
1000
3500 | Tok
Hol
NBS
NBS | | | 1331
1330 | 1345 | 3 | 300-100 | 16,34, 44
Har, 38, 52 | 9400
2800
1500
450
231
231
200
200
200
167
81 | CD CD CD CD SA CD MCA ESD ECD SD | 1330
1330
1330
1331
1330
1340
1330
1330 | 1437
1344.5
1401
1346
1340.3
1346.7
1347
1347
1341
1339 | 1336
1337
1336
1336
-
1346
-
1331
1339
1334 | (1095)
(785)
(432)
600
1800
1800
1250
200
4000
(300) | HHI Ott HHI NBS AOP AOP Ned Osl Jod NBS Cav | | Syd | 1249 | | | | 44 | 9400
2800
1500
450
450
200 | CD
CD
CD
ECD
CA
SD | 1252
1253
1252
1254.3
1256
1254.3 | 1341
1308
1215
1256.3
1307
1254.6 | 1301
1256
1256
1255.3
1303 | (958)
(275)
(297)
540
340
360 | HHI
Ott
HHI
NBS
NBS
Ned | | Syd | | | | | | 8000 | (5) | 1000 | 2000 | | , | | | | 1836 | | | | 34, 44 | 2800
2800 | SID
CID | 1836
1836 | 2236
1841 | 1836 | (57) | Ott
Ott | 2.II-7 2 .I**V**-7 # TABLE IV | | | F | LARE | | | | | | SI | PECTRAL | OBSERV | ATION | S TYPE | |------------|-------------|------------|------|--------|-------------|------|-----------------|-------------|--------|---------|--------|-------|--------| | Gr. | Beg. | End | Max. | | | | Flare
Serial | Event | Beg. | End | Max. | | req. | | Day | UT | UT | UT | Positi | on | Imp. | No. | No. | UT | UT | Int. | | ange | | Nov.
04 | No Flar | e Reporte | d | | | | | 204 | 2240 | 2242 | | | | | 05 | 1205 | 1257 | 1207 | S24 V | ₩5 4 | 3 | 87 | | | | *** | | | | | | | | | | | | 1 | 7 | | | | | | 06 | No Flar | e Reporte | d | | | | | 207 | 0424 | 0434 | | | | | 06 | 0834 | 0900 | 0841 | S 28 V | ₩ 67 | 2+ | 88 | | | | | | | | 10 | 0606 | 0735 | 0623 | S 25 1 | E65 | 3 | 89 | | | | | | | | 13 | 0457 | 0511 | 0458 | S 25 1 | F27 | 1 | | 211 | 0502 | 0505 | | | | | 13 | 0401 | 0311 | 0430 | 323 | | • | | | 0002 | 2022 | A | | N/4E | • | 91 | | | | | | | | 15 | 0517 | 0636 | 0537 | N18 V | W 45 | 3 | 91 | 20 | No Flai | re Reporte | ·d | | | | | 216 | 0050.5 | 0052 | 22 | 0404 | 0446 | 0409 | N31 | W28 | 2+ | | 217 | 0410.5 | 0427 | | - | - | | İ | 23 | <u>0750</u> | 0925 | 0804 | N26 | W 54 | 3 | 92 | | i i | 24 | 0848 | 1202 | 0911 | S14 | E37 | 3+ | 93 | ł | | | | | | | • | | 1 | | | | | | 24 | No Fla | re Report | ed | | | | | 221 | | | | | | | 25 | No Fla | re Report | ed | | | | 1 | 222 | 0416 | 0430 | | | | | 29
Dec. | 0045 | 0600 | 0213 | N41 | | 3+ | 94 | 224 | 0059 | 0103 | | - | - | | 05 | 0548 | 0812 | 0657 | S 20 | W19 | 3 | 97 | | | | | | | | 06 | 0347 | 0443 | 0353 | N16 | E45 | 2 | | 229 | 0400 | 0419 | | | | | 1 | | | | | | | | | 1 | | | | | | 12 | 1750 | 1859 | 1806 | N15 | W41 | 2+ | 99 | 234 | 1809 | 1814 | | 3 | 135-1 | | | | | | | | | | | | | | | | | 13 | No Fla | re Report | ed | | | | | |] | 14 | 1245 | 1450 | _ | N18 | E78 | 3 | 100 | 1100 | 48-0 | 1140 | N17 | E50 | 3 | 101 | | | | | | | | 16 | 1125 | 1238 | 1140 | MIA | EJU | J | 1.01 | | | | | | | | L | | | | | | | 1 | | | | | | | 2.11-9 0 | | SPI | ECTRAL O | BSERVAT | IONS TYPE | IV | | SINC | GLE FREG | QUENCY R | ADIO EMIS | SIONS | | |--------|----------------------|-----------|--------------|----------------|-------------------------|--|---|--|--|---|--|---| | Obs. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | Obsev.
Ref. | Freq. | Туре | Beg.
UT | End
UT | Max.
UT | Flux | Obs. | | | 0736
0735 | | | | 44
16, 27 | 1420
600
545
231
200 | CD
CD
CD
CD | 0736
0737
0735
0745
0735 | 0751
0752
0804
0759
0806 | 0741
0745
-
0754 | 626
579
<u>300</u>
6200
<u>208</u> | Syd
Syd
Hol
AOP
Hol | | | | | | | | 9400
3000
600 | SD
CD
CD | 0454
0442
0419 | 0544
0522
0421.8 | 0501
0456
0419 | (19)
409
48 | Nag
Tok
Syd | | | | | | | į | 9500
3750
1000
200 | ECD
CD
F
ESD | 0621
0620
0608
0553.3 | 0628
0626
0610
0553.7 | 0624
0622.9
0609.2 | 694
(120)
(170)
3500 | Tok
Nag
Nag
Tok | | Syd | 0916 | | | | 44 | 1500
600 | CD
ECD,
CD | 0805
0815 | 0812.5
0823 | 0804.5
0822 | (316)
192 | HHI
Mos | | | | | | | | 536
200
169 | CD
CD
ECA | 0801
0804
0804 | 0845
0825
0815 | 0813
-
- | 410
950
810 | Pra
Hol
Ucc | | Syd | | | | | | 9400
3750
2000
1000
600
545
200
200 | ECD
SD
SD
ESD
CD
CD
CD
CD | 0545
0544
0544
0544
0545
0543
0543.5 | 0548
0547
0547
0547
0546.5
0545
0545 | 0545.4
0545.3
0545.5
0545.4
0545
-
0545.4 | (870)
(357)
(154)
(1600)
523
300
100
3000 | Nag
Nag
Nag
Nag
Syd
Hol
Hol
Tok | | | ! | | | | | 9500
9500
9500
3000 | CD
ESD
SD
CD | 2243
2333
2345.7
2345 | 2332
2333.5
2349.7
2350 | 2250
2333
2347
2346.3 | 653
589
807
556 | Tok
Tok
Tok
Tok | | | 1543 | 2337 | 3 | 580 - 10 | 0 Har, 38 | 2800
2800
2800
450
450 | SD
SD
CD
ECD
ECD | 1555
1607
1621
1602
1622 | 1655
1611
1631
1614
1631 | 1612
1608.3
1623
1612
1624 | (14)
(26)
(42)
1200
2000 | Ott
Ott
Ott
NBS
NBS | | | 1712 | 1808 | 3 | | 27 | 2800
450
200 | SD
ECD
CD | 1716
1716
1716 | 1725
1748
1720 | 1718
1720
- | (224)
3700
500 | Ott
NBS
Par | | | 2235 | | | | 44 | 9500
1420
600
545
450
450
200 | CD
CD
CD
CD
CD
CD | 2235
2236
2230
2235
2234.3
2239
2235 | 2308
2242
2330
2258
2238.9
2250
2244 | 2240
2240
2240
-
2236,3
2242 | 1023
952
623
2000
4700
3900
550 | Tok
Syd
Syd
Hol
NBS
NBS
Hol | | | 1437 | 1520 | 3 | 580-100 | Har, 38 | 2980
545
450
169 | CD
CD
CD
CAM | 1441
1439
1436
1439 | 1451
1458
1459
1448 | -
1447
- | 602
1200
3400
600 | Ned
Ned
NBS
Ucc | | Har,38 | | | | | | 167 | ECD | 1821.8 | 824.5 | 1823 | 3000 | NBS | | | 0245 | | | | 44 | 9400
3750
3000
2000
1000
600
545
200
200 | ECD
ECD
ESD
ECD
ECD
CD
SD
SD | 0245
0245.4
0245
0245.5
0246.5
0247
0244
0246
0248 | 0248
0250.4
0300
0248
0249.5
0251
0255
0347.2 |
0246.5
0246.3
0246
0246.5
0246.5
0248 | (2400)
(2650)
2300
(1690)
(780)
258
300
1000
660 | Nag
Nag
Tok
Nag
Nag
Syd
Hol
Tok
Hir | | Har,38 | 2228
2232
2230 | 2255 | 3 | 330-100 | 16, 44
Har, 38
37 | 9500
1420
450
200 | ECD
SD
ECD
CD | 2229
2230
2229
2230 | 2249
2237
2244
2238 | 2233
2230
2230
- | 1322
916
3600
2500 | Tok
Syd
NBS
Hol | 2.11-10 2.҈₩-10 | | | | | | | | | | | | TABLE | IV | 1 | |------------|-------------|-----------|------------|------|-------------|------|------------------------|--------------|------------|-----------|--------------|----------------|-------| | | | FLA | RE | | | | | | SF | ECTRAL C | BSERVATION | S TYP | E II | | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Pos | ition | Imp. | Flare
Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
Int. | Freq.
Range | : | | Dec.
17 | 0734 | 1004 | 0737 | N20 | E41 | 2+ | | | | | | | ·
 | | 18 | 0408 | 0550 | 0500 | N17 | E26 | 3 | 102 | | | | | | | | 18 | <u>0605</u> | 0712 | 0624 | N17 | E20 | 3 | 103 | | | | | | | | 19 | 0757 | 1015 | 0801 | N20 | E13 | 2+ | 104 | 238 | 0803 | 0825 | - | - | | | | 0540 | 0606 | 0545 | NIE | F01 | 1. | | 241 | 0546 | 0551.7 | | | 1 | | 20 | 0543 | 0606 | 0545 | NIS | E01 | 1+ | | 241 | V340 | 0301.7 | | | ! | | 21 | 2232 | 2400 | 2251 | N24 | E50 | 3 | 105 | | | | | | | | 22 | No Flar | e Report | ed | | | | | 246 | 22 | 1715 | 1821 | 1736 | N18 | W30 | 1+ | | | | | | | , | | 22 | 2240 | 2332 | 2244 | N20 | W34 | 2 | | | | | | | | | 23 | <u>1436</u> | 1557 | 1440 | N18 | W45 | 1+ | | 249 | 25 | 1812 | 1900 | 1822 | S 07 | W70 | | | 258 | 1822.2 | 1825 | 3 | 230- | -100 | | 26 | No Flar | e Patrol | | | | | | | | | | | | | 28 | 2229 | 2331 | | N25 | W 50 | 2 | | 261 | 2231.5 | 2242 | 3+ | 330 | -100 | 2.N-10 | Syd | | SP | ECTRAL O | BSERVAT | IONS TY | PE IV | | SING | LE FREQ | UENCY RA | DIO EMISS | SIONS | | |---|---------|------|----------|---------|---------|-----------------------|-------------|----------|--------------|--------------|-----------|---------------|------------| | 1205 | Obs. | | | | | | Freq. | Туре | | | | Flux | Obs. | | 1205 | Svd | | | | | | | | | | | | | | | -,- | 1205 | | Δ | | 44 | 2800 | en. | 1205 | 1919 | 1 207 | (550) | 0# | | Syd | | 1203 | | A | | 11 | 1500 | CD | 1204 | 1221 | 1208 | (247) | нні | | Syd | ı | | | | | | | | | | | | | | Syd | Svd | | | | | | 3000 | SD | | | 0422 | | | | Syd | ٥,٠ | | | | | | | | | | | | | | Syd | | | | | | | | | | | | | | | Syd | | | | | | | 9500 | CD | 0607 | 0618 | 0608 | 1112 | Tok | | Syd 0406 | | | | | | | 545 | CD | 0608 | 0610 | - | 200 | Hol | | | Syd | | | | | | | | | | | | | | 1420 SD 0458 0459 0459 162 Syd 162 Syd 1 | | | | | | | | | | | | | | | Syd O406 | | | | | | | 1420 | SD | 0458 | 0459 | | 162 | Syd | | Syd | | | | | | | | | | | - | | | | Syd | | | | | | | 9500 | CD | 0525 | 0645 | 0545 | 483 | Tok | | Syd | | | | | | | 3000 | CA | 0522 | 0600 | 0542 | 537 | Tok | | Syd | | | | | | | | | | | | | | | 1350 1350 1350 1360 1361 | Svd | | | | | | 9500 | ECD | 0042 | 0052 | 0045 | 517 | Tok | | Syd O406 | -, | | | | | | 3750 | SD | 0042 | 0049 | 0045 | (135) | Nag | | Syd | | | | | | | | | | | | | | | Syd | | | | | | | 200 | SD | 0050.2 | 0050.7 | - | 1700 | Tok | | 1750 200 | | | | | | | | | | | | _ | | | 0750 | Syd | 0406 | | | | 44 | | | | | | | | | 0750 | | | | | | | 3000 | CD | 0406 | 0436 | 0409 | 870 | Tok | | 2980 CD 0754 0808 - 560 Ned | | | | | | | | | | | | | | | 2980 CD 0754 0808 - 560 Ned | | 0750 | | | | 44 | 9400 | CD | 0750 | 0855 | 0759 | (800) | нні | | 231 CD 0800,2 0803,8 0802,5 1800 ADP APP A | | 0.00 | | | | | 2980 | CD | 0754 | 0808 | | 560 | Ned | | 200 CD 0758 0810 - 180 Ned | | | | | | | | | | | 0802.5 | | | | 16 | | | | | | | | | | | - | | | | 1903 27, 52 | | 0857 | | В | | | 9400 | CD | 0857 | 1003 | 0903.5 | (543) | нні | | 231 SA 0901 0958 - 1400 AOP | ļ | | | | | | | | | | | | | | 208 ECD | | 0903 | | | | 21, 02 | 231 | | 0901 | 0958 | - | 1400 | | | 1811 1931 3 580-100 Har, 27, 38 450 CD 1810 1832 1819 5900 NBS | | | | | | | | | | | | | | | 1811 1931 3 580-100 Har, 27, 38 450 CD 1810 1832 1819 5900 NBS | | | | | | | 200 | CA | 0850 | 0955 | - | 50000 | | | Syd | | | | | | | | | | | - | | | | Syd 200 CA 0415 0655 0623 550 Tok | , | | | | | 07 00 | | | | | | | | | Syd 9500 SD 0047 0247 0208 488 Tok 9500 CD 0549 0559 0555 541 Tok 3000 CD 0548 0556 0552 375 Tok Syd 9500 CD 0548 0556 0552 375 Tok 9500 CD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 1000 F 0401 0403 0406 (82) Nag Har, 38 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 0153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0153 0240 0232 (1530) Nag 3750 CA 0153 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0153
0155 | ĺ | 1811 | 1931 | 3 | 580-10 | ю наг, <i>21</i> , зо | 450 | CD | 1810 | 1832 | 1819 | 5900 | NBS | | 9500 CD 0549 0559 0555 541 Tok 3000 CD 0548 0556 0552 375 Tok 9500 CD 0350 0422 0407 508 Tok 3750 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0352 (19) Nag 1000 F 0401 0403 0406 (82) Nag 1000 F 0401 0403 0406 (82) Nag Har, 38 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 0153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned | Syd | | | | | | 200 | CA | 0415 | 0655 | 0623 | 550 | Tok | | Syd Syd 9500 CD 0548 0556 0552 375 Tok 9500 CD 0350 0422 0407 508 Tok 3750 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0350 (20) Nag 2000 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 201 ECD 1758 1811.5 - 54 Cor 201 ECD 1758 0256 0205 2275 Tok 201 ECD 1758 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1301 1242 (397) HHI 600 ESA 1237 1301 1242 1300 AOP 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1147 1141 280 Cra 1135 A 44 2980 CD 1135 1210 - 366 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 1135 A 44 2980 CD 1135 1147 1141 280 Cra | Syd | | | | | | 9500 | SD | 0047 | 0247 | 0208 | 488 | Tok | | Syd 9500 CD 0350 0422 0407 508 Tok 3750 SD 0349 0355 0350 (20) Nag 2000 SD 0349 0355 0352 (19) Nag 1000 F 0401 0409 0406 (82) Nag 1000 F 0401 0409 0406 (82) Nag 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 0153 | | | | | | | | | | | | | | | Har, 38 Har, 38 Har, 38 A 44 9400 CD 1228 1235 A 44 9400 CD 1228 1236 CD 1230 1323 1240 1328 A 44 9500 CD 1230 1323 1240 1324 1335 A 44 9500 CD 1230 1323 1240 1324 1300 1326 A 1237 1301 1242 1300 AOP 135 A 44 9800 CD 1135 1210 136 Ned 13750 A 44 9800 CD 1135 1210 136 Ned 13750 A 44 9800 CD 1135 1210 136 Ned | | | | | | | | | | | | | | | Har, 38 Har, 38 1000 SD 0349 0355 0352 (19) Nag 1000 F 0401 0402 0406 (82) Nag 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 10153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3700 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 230 (CD 1238 1255 - 5000 Ned 130 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 130 ECD 1135 1210 - 366 Ned 130 ECD 1135 1210 - 366 Ned 130 ECD 1139 1147 1141 280 Cra | Syd | | | | | | | | | | | | | | Har, 38 2800 CA 1757 1809 1804 (94) Ott 201 ECD 1758 1811.5 - 54 Cor 0153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned | | | | | | | 2000 | SD | 0349 | 0355 | 0352 | (19) | Nag | | 201 ECD 1758 1811.5 - <u>54</u> Cor 10153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 1500 CD 1230 1323 1240 (397) HHI 1600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - <u>5000</u> Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra | | | | | | | | | | | | | | | 0153 44 9500 CD 0156 0256 0205 2275 Tok 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra | Har, 38 | | | | | | 2800
201 | | | | | | | | 9400 CA 0155 0237 0205 (1530) Nag 3750 CA 0155 0240 0232 (630) Nag 3750 CA 0155 0240 0232 (630) Nag 3000 CA 0153 0303 0232 1130 Tok | | 0152 | | | | 44 | | | | | | | | | 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra | ļ | 0103 | | | | 44 | 9400 | CA | 0155 | 0237 | 0205 | (1530) | Nag | | 1235 A 44 9400 CD 1228 - 1241 (940) HHI 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra | | | | | | | | | | | | | Nag
Tok | | 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra | | | | | | | 3000 | CA | 4199 | 0303 | 0202 | -100 | . JR | | 1238 27 1500 CD 1230 1323 1240 (397) HHI 600 ESA 1237 1256 - 504 Ucc 536 CD 1230 1316 1245 630 Pra 231 CD 1237 1301 1242 1300 AOP 200 CD 1238 1255 - 5000 Ned 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra | | | | Α | | | | | | | | | | | 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1141 280 Cra | | | | | | 27 | 1500 | CD | 1230 | | 1240 | (397) | HHI | | 1135 A 44 2980 CD 1135 1210 - 366 Ned 810 ECD 1139 1147 1141 280 Cra | | | | | | | 536 | CD | 1230 | 1316 | 1245 | 630 | Pra | | 1135 A 44 2980 CD 1135 1210 - 366 Ned
810 ECD 1139 1147 1141 280 Cra | | | | | | | 231 | CD | 1237 | | | | | | 810 ECD 1139 1147 1141 280 Cra | | 144- | | | | | | | | | | | | | 231 CD 1136 1148 1140 1300 AOP | | 1135 | | A | | 44 | 810 | ECD | 1139 | 1147 | 1141 | 280 | Cra | | ZUU CD 1136 1145 - 50000 Ned | | | | | | | 231
200 | CD
CD | 1136
1136 | 1148
1145 | 1140 | 1300
50000 | AOP
Ned | 2.11-9 @ # TABLE V. CATALOGUE OF GEOMAGNETIC STORMS DURING 1957 This catalogue has been prepared from geomagnetic storm data from many sources. Data derived from papers published in the scientific literature are referenced in the last column of the table. The lists of sudden commencement storms published in the Journal of Geophysical Research (ref. 5, 67). The Annals of the IGY (ref. 50) and Bulletins 12 1, published by the IAGA (ref. 4) have been used to obtain the basic list. The table has been set up in several sections that will be described in some detail under the column headings; these sections are as follows: - 1. General storm classification. - 2. Number of observatories reporting the storm and type of storm reported (from ref. 4). - 3. Sudden commencement reports in references 4, 67, 5 and 50. - 4. Planetary three hour Greenwich interval indices during the storm. - 5. Values for D, H, and Z and other storm data from six selected magnetic observatories. | | | <u> Geogra</u> | phic | Geoma | gnetic | |-----|----------------|----------------------|----------------------|-------|--------| | | | Lat. | Long. | Lat. | Long. | | Co | College Alaska | N64°52' | 212 ⁰ 10' | N64.5 | 255.4 | | Fr | Fredericksburg | N38012' | 2820381 | N49.6 | 349.9 | | Gr* | Greenwich | N51°00' | 355°31' | N54.6 | 79.0 | | Но | Honolulu | N21°18' | 2010541 | N21.1 | 266.5 | | Si | Sitka | N57°04' | 2240401 | N60.0 | 275.4 | | Tu | Tucson | N32 ⁰ 15' | 249 ⁰ 10' | N40.4 | 312.2 | ^{*}Data published by the Royal Greenwich Observatory in reference 21. The column heading, together with any necessary descriptions or definitions, follows: ### Column 1 Greenwich Day ## GENERAL STORM CLASSIFICATION (Columns 2 through 7) Column 2 Onset time UT Column 3 End, Greenwich day/UT Column 4 Type, g - gradual, sc - sudden commencement - Column 5 Maximum intensity, m moderate (K index as great as 5) ms = moderately severe (K = 6 or 7), s = severe (K = 8 or 9). - Column 6 Maximum three hour Kp - $\frac{\text{Column 7}}{K_D} = \frac{\text{Average storm } K_D}{\text{Ko for the period shown in Columns 2 and 3.}}$ # NUMBER OF OBSERVATORIES REPORTING THE GEOMAGNETIC STORM (Columns 8 through 20) These data have been taken from the IAGA Bulletin 12 1 (ref. 4). The names of the observatories reporting in each category are given in that reference. The meanings of the column symbols follow: - A The phenomenon is a very distinct ssc - B It is a fair, ordinary, but unmistakable ssc - C It is a doubtful ssc - D The ssc was decidely not recorded on the magnetogram although the records were satisfactory - E The phenomenon cannot be discovered because of heavy disturbance. - X The recording is missing Other observatories have classified the phenomena in question with the following symbols: - si Sudden geomagnetic change or impulse - b Clear and isolated bays appearing during calm periods without pulsations or sharp beginnings. - bs Bay with sharp beginnings without pulsations - bp Bay with pulsation without sharp beginnings - bps Bay with pulsation and sharp beginning - pt Train of pulsations consisting of several series of oscillations. - pg Giant pulsations The number of observatories reporting in each of the categories is given. ## NUMBER OF ssc IN THE PUBLISHED LISTS (Columns 21 through 24) Column 21 From reference 4. This is the
sum of the A's and B's, Columns 8 and 9. Column 22 From reference 67 ### Column 23 From reference 5 Column 24 From reference 50 ### PLANETARY THREE-HOUR INDICES AND OTHER DATA DURING THE STORM PERIOD - Column 25 Planetary three-hour indices - Column 26 Sum of the Kp for the Greenwich day - Column 27 Ap for the Greenwich day - Column 28 The Greenwich day and three hour interval with the first $\frac{K_0 \ge 4}{1}$ - Column 29 The Greenwich day and the first three-hour interval in which the Kp for three consecutive intervals was less than 4- Geomagnetic data for the six selected observatories listed on page 2.V-i, with the exception of the Greenwich (Gr) data, the values given in Columns 30 through 36 were taken from reference 67. The Greenwich data were published in <u>The Observatory</u> Vol 78 (1958) 40-42 (Ref. 21). - Column 30 D-Magnetic Declination this is the azimuth of the horizontal component or the magnetic intensity measured from the geographic north towards the east from 0 to 360. Unit in minutes of Arc. - Column 31 H-Horizontal Intensity. The magnitude of the horizontal component, always considered as positive. In units of gammas (10⁻⁵ gauss) - Column 32 Z-Vertical Intensity. The magnitude of the vertical component. Positives if downward, negatives if upward, in units of gammas (10⁻⁵ gauss) - Column 33 Onset Time. This is the time reported by the observatory. - Column 34 End Time. Reported by the observatory (Greenwich Day/UT) - Column 36 Name of the Observatory. The code is given on page 2.V-i. - Column 37 Range of Starting Time. - Column 38 Sources. These are the published sources for the data given in this table. In many cases these references give relations of the storms to other phenomena, such as a solar flare, polar cap absorption, etc. # TABLE V-A. MAJOR GEOMAGNETIC STORMS DURING 1957 A list of all storms during 1957 with at least one $K_{\rm p}$ equal to or greater than 7+ is given on Table V-A, page 2.V-4. These data are taken from page 217, reference 4. | Part Dec Code C | | | T | | | | | | г | | | | | | | | | | | | | | | | | , | | | | | | |--|----------------------|----------------|----------------------|-------------------------|---------------|-------------|----------------|----------------|---------------|---------------|--------------------------|-------------|-------------|-------------|-------------|---|-----|--------|-----|----|----|---------------|--------------|---------------|----|----------------|----------------|----------------|----------------|----------------|----------------| | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Date | Onset | End | Туре | | | Storm | А | E | 3 C | | E | х | si | b | bs | bp | bps | pt | pg | 4 | 67 | 5 | 50 | 1 | | | | | | | 3 10 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | | 0910 | 03/03xx | sc | m | 5+ | 4 o | 45 | 1 | .0 | 1 - | - | 3 | - | - | - | - | - | - | _ | 55 | 11 | 43 | | | | | | | | | 4 21 | | | | | | | | | : | | | - | | - | - | - | : | - | - | - | - | | 1 | - | | 3+ | 4+ | 5 o | 40 | 40 | 4 o | | 6 24 1008 1 100 271500 so m 5 50 31 12 - 4 1 9 - 1 | | 22 | | | | | | | 42 | | | | | | | | | | - | - | - | | | | | 8+ | 7- | 6+ | 5- | 5-
4o | 6-
40 | | Second S | | | | -
25/10xx | | -
m | -
5+ | -
50 | | | | | | | | | | | | - | - | | | | | 40 | 5- | 2- | 3- | 3+ | 3- | | 03 | 8 | - 1 | 1313 | 30/21xx | sc | ms | 6- | 5+ | 27 | 2 | 6 (| 3 - | - | - | - | - | 1 | - | - | - | - | 53 | 10 | 40 | | | | | | | | | 12 13 2 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 03
04 | | | | | | | | | | | | | 7
2 | | 3 | - | | - | | | | | | 2-
40 | 2+
3+ | 1 -
30 | 10
4- | 20
50 | 2+ | | 12 13 14 0629 14/0622 sc ms 6. 4. 14 21 13 7 3 - 2 35 4 12 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | 11 | 12 | 1850 | 14/09xx | sc | ms | 6+ | 4+ | 24 | 19 | 9 3 | : - | _ | 1 | 9 | - | 3 | _ | _ | - | - | 43 | 9 | 37 | | 2+ | 4+ | 3+ | 3- | 2 o | 20 | | 13 22 | | | 0939 | 14/04xx | sc | ms | 6+ | 4+ | 14 | 21 | l 13 | . 7 | 3 | - | 2 | - | - | - | - | - | | 35 | 4 | 12 | | 3+ | 5- | 4- | 5 o | 5+ | 5 0 | | 14 01 1014 04/06xx sc,g s s s s s s s s s s s s s s s s s s s | | | 1807 | 24/14xx | sc | ms | 70 | 60 | 47 | 8 | 3 - | 3 | 2 | - | - | • | - | - | - | • | - | 55 | 15 | 43 | | 4- | 4- | 3 o | 2 o | 3- | 3 o | | 16 10 0023 10/21xx sc ms 7- 50 | 14 | 01
02
03 | 1614 | 04/06xx | sc,g | | 8+ | 5 0 | 13 | 2! | 5 11 | . 7 | 1 | 1 | 1 | - | 1 | - | • | - | - | 38 | 12 | 25 | | 6o
5o | 8+
5+ | 8+
5+ | 70
3+ | 7-
30 | 5+
4+ | | 18 | 16 | 10 | | 10/21xx | | | | | -
33 | -
24 | -
1 - | | - | 2 | _ | - | - 1 | - | - | - | - | | | | : | 5+ | 7- | 7- | 6- | 5- | 5+ | | 24 19 25 1010 25/16xx sc ms 60 5- 14 32 15 1 46 6 22 30 20 2 10 10 4 60 5- 5- 2- 20 20 20 26 1050 30/09xx sc sc sc sc sc sc sc | 18 | 16 | | | | | | | 3 | 14 | ł 24
- | 15 | - | 1
- | - | - | : | 1
- | | | | | | 7 | : | 5 0 | 4+ | 4+ | 2+ | 3 o | 4- | | 20 26 | | | 0130 | 25/16жх | sc | ms | 6 o | 5- | 14 | 32 | : 15 | 1 | - | - | - | - | - | - | - | • | - | 46 | 6 | 22 | ļ | 3 o | 2 o | 2+ | 2- | 10 | 1 o | | 25 05 | 21
22
23
24 | 27
28
29 | 1136
0412
0336 | 30/09xx
-
30/05xx | sc
-
sc | s
s
s | 8-
8-
8- | 6-
6-
6- | 13
-
50 | 17
20
- | 7 24
) 14
-
) - | -
-
- | 2
-
- | 1
-
2 | 3
-
- | - | - | - | - | - | - | 33
-
60 | 3
0
14 | 19
2
45 | | 4+
70
3+ | 4-
7-
5+ | 30
6+
4+ | 40
6-
40 | 5-
3+
70 | 4+
40
8- | | 27 15 16 2048 16/06xx sc ms 6- 5- 18 25 8 3 - 2 5 1 43 4 34 0+ 20 20 30 3+ 20 3 4+ 40 2+ 2+ 3- 3+ 3 3 20 3 3+ | 25 | | | | | | | -
4+ | - | - | - | | - | - | - | - | - | - | - | - | - | - | | | | | | | | 6- | 5 0 | | 28 17 | | | 2048 | 16/06xx | sc | ms | 6- | 5- | 18 | 25 | 5 8 | 3 | - | 2 | 5 | 1 | _ | _ | - | - | - | 43 | 4 | 34 | | | | | | | | | 29 18 1508 20/06xx sc,g ms 7-
5+ 16 20 13 1 11 36 5 12 35 0 7 6+ 4- 30 4- 2+ 6- 5 5 5 5 2 | | | 1136 | 20/06xx | sc | s | 8- | 5 0 | 50 | 11 | | - | - | - | - | - | - | - | - | - | - | 61 | 13 | 45 | | 4+ | 4 o | 2+ | 2+ | 3- | 3+ | | 31 26 0201 27/10xx sc m 50 40 | 30 | 18
19 | | | | | | | 16
22 | 20
13 | 13 | 1
3 | - | - | 11
18 | - | - | - | | - | - | | | | | 6+
6+ | 6+ | 7- | 4+ | 5- | 5 o | | 50 40 4- 3+ 3+ 2+ 2 | | | 0201 | 27/10xx | sc | m | 50 | 4 o | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | | 2 o | 3 o | 3+ | 40 | 5- | 5- | | | | | | | | | | | | | | | | | —-т | | т | |----------------------|----------------|------------|---------------------|------------|--------------------------|----------------------|---|--|-------------------------------------|---|--|--|--|---------------------------------|----------------------------------|----------------------------|--| | Gr. Int | | | 8 | | ∑Kp | Ap | Kp Interval
1st Kp≥4-
Date/Interval | Time Where
3 Consecutive
Kp44-
Day/Interval | D | н | z | Onset | End | Max.
Kp | Obs. | Range of Starting
Times | References | | 3+ | 2+ | - 2 | + 20 | , | 22- | 13 | 21/4 | 21/5 | - | - | - | - | - | - | - | - | 34 | | 5-
10 | 5-
10 | | - 3c
+ 2+ | | 29+
17+ | 28
10 | 30/4 | 30/8 | 28
41
16 | 124
371
97 | 86
405
26 | 29/0822
30/0823
30/0822 | 31/06xx
31/06xx
31/06xx | 5
6
5 | Fr
Si
Tu | 29/0922 - 30/0823 | | | 4+
30 | 4+ | 5 | - 6- | | 32+
36- | 33
38 | 03/2 | 07/2 | 19 | 108 | 71 | 03/03жх | 06/12xx | 5 | Tu | 03/03xx - 06/2029 | | | 2+
3+
1- | 40
3-
1- | - 4 | + 50 |) | 31-
34-
14+ | 29
33
9 | | | 12
10 | 165
121 | 29
25 | 06/2029
06/2029 | 07/03xx
07/08xx | 6
5 | Fr
Tu | | | | 4- | 5 a | 4 | - 2- | - | 25+ | 19 | 15/5 | 15/8 | - | - | - | - | - | - | - | - | | | 20
5-
70
40 | | · 6 | | + | 22-
370
48-
25- | 14
41
84
17 | 24/1
25/1 | 24/4
27/1 | 250
30
270
8
179 | 1510
290
25
130
1520
135 | 1270
151
205
100
811
53 | 25/0045
25/0047
25/0047
25/0048
25/0047
25/0046 | 27/03xx
27/01xx
-
27/07xx
27/04xx
28/15xx | -
6
6
-
5
8
5 | Co
Fr
Gr
Ho
Si
Tu | 24/0340 - 25/0048 | 34,52 | | 20
80 | | | o 2
o 8 | | 11-
55- | 5
150 | 30/2 | 02/1 | 213
450
10 | 1660
48
240 | 830
365
75 | 29/2346
30/0528
30/0529 | 01/10xx
-
01/22xx | 9
-
6 | Si
Gr
Ho | 29/2346 - 30/0529 | 10,16,23,28,52 | | 2- | 5- | - 7 | o 5 | o | 43 o | 83 | 30/2 | 02/1 | 11
10 | 211
90 | 36
30 | 30/0528
01/16xx
01/1746 | -
01/22xx
01/24xx | -
7
6 | Tu
Fr
Tu | 01/16xx - 01/1747 | 28 | | 8o
5+ | | | - 2
+ 3 | | 32+
300 | 55
30 | 02/4 | 03/6 | 150
33
176
16 | 1390
200
1333
117 | 740
174
821
86 | 02/0857
02/0857
02/0858
02/0857 | 03/15xx
03/15xx
03/15xx
03/15xx | 6
6
9 | Co
Fr
Si
Tu | 02/0857 - 03/0150 | 16,22,28,33,36,42,
46,52 | | 10
3+
20 | 20 | o 3 | - 5
 o 6
 + 2 | - | 15-
38-
17+ | 12
56
9 | 04/7 | 05/5 | 230
3
118
21 | 1630
180
1208
162 | 1130
35
641
19 | 05/0043
05/0045
05/0043
05/0043 | 05/17xx
05/13xx
06/02xx
05/15xx | 7
7
8
7 | Co
Ho
Si
Tu | 04/2342 - 05/0045 | 10,16,28,34,46
22,23,28,33,42,52 | | 3 - | . 4 | o 4 | to 3 | o | 23- | 16 | 16/4 | 16/8 | - | - | - | - | - | - | - | | 22,28,33,36,42 | | 40
20 | | | 5- 4
2+ 4 | | 30+
19+ | 25
11 | 19/5 | 20/1 | - | - | - | - | - | - | - | 0519 - 1344 | 22,28,33,42,52 | | 3 - | | | 6- 4
1- 3 | | 29+
150 | 26
11 | 22/3 | 23/3 | 42
16 | 216
122 | 302
40 | 22/0419
22/0418 | 23/06xx
23/07xx | 5
5 | Si
Tu | | 22,28,33,36,42 | | 1a
1a | 2 | | 40 3
l+ 1 | | 12-
120 | 8
6 | 27/7 | 27/8 | - | - | - | - | - | - | - | | 22,28,33,34,36,
42,52 | | 20
10 | | | 5+ 4
10 2 | | 26-
15+ | 27
12 | 03/6 | 04/2 | 90
180
55
15 | 730
35
186
138 | 410
70
137
49 | 03/1557
03/1559
03/1557
03/1557 | 04/10xx
-
04/07xx
04/09xx | 5 | Co
Gr
Si
Tu | | 22,23,28,33,36,
37,42 | | 40
20 | · 4 | | 4+ 4
10 1 | | 33o
15- | 31
8 | 06/2 | 07/1 | 11 | 41 | 16 | 06/0508 | 06/15xx | 5 | Tu | | 22,23,28,33,36,42 | | 5 | - 2 | eo : | 2 o : | 3+ | 23 o | 16 | 09/5 | 09/6 | - | | - | - | - | - | | | 28,33,34,36 | | 4. | - 3 | lo ' | 4- 3 | lo | 330 | 33 | 12/2 | 13/8 | 280
27
15
16 | 1930
122
111
85 | 1340
90
44
13 | 12/0200
12/0240
12/01xx
13/0019 | 13/24xx
13/14xx
13/06xx
13/13xx | 5
5 | Co
Fr
Tu
Tu | 12/01xx - 13/0619 | 28,33 | | 2 | + 4 | 4- | 1+ | ۱- | 23+ | 19 | 21/1 | 21/3 | 14 | 22 | 56 | 0248 | 21/08xx | 5 | Hr | | 28 | | 2 | 0 1 | 1 + | 7- (| 30 | 22- | 28 . | 29/7 | 30/7 | 180
28
225 | 215 | | 29/1900 | 30/21xx
30/14xx | | Co
Fr
Gr | 29/1135 - 29/1921 | 10,34
16,22,23,28,32,33,
36,37,42,46,52 | | 2 | o f | 5- | 30 | 1 0 | 32- | 38 | | | 4
79
22 | 120
435 | | 29/1921
29/1921 | 30/20xx
30/12xx
30/15xx | 6 | Ho
Si
Tu | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 4 3 | | | 70 :
20 : | | 30-
28+ | 36
28 | 31/5 | 01/5 | 110
200
59
17 | 25
493 | 130
343 | 31/13xx
31/12xx | 01/16xx
-
01/15xx | - | Co
Gr
Si
Tu | 1200 - 1812 | 37
10,16,22,28,33,34,42
10,16,22,23,28,33, | | 7
8 | | | 8-
60 | | 49-
540 | 102
135 | 02/2 | 07/3 | 460
50
465
11
241
48 | 481
75
180
1683 | 522
375
55
1008 | 02/0315
02/0315
02/0315
02/0315 | 04/06xx
04/06xx
-
04/06xx
04/06xx
04/09xx | 6 6 9 | Co
Fr
Gr
Ho
Si
Tu | 02/0300 - 03/1233 | 34,36,37,42,46,52
16,23 | _2 | | | | | | | | Τ | | | | | | | | | | | | | ī | | | | <u> </u> | | | |----------------------------|----------------------|-------------------------------|----------|--------------|----------------|------------------------|--------------|--------------|----------|---------|-------------|-----|-------------|---|-----|----|-----|----|----|--------------|---------|--------------|--------------|----------------|----------------------------|----------------| | erial Date
No. | Onset | End | Туре | Max.
Int. | Max.
Kp | Average
Storm
Kp | A | В | C | D | E | х | si | b | bs | bp | bps | pt | pg | 4 | 67 | 5 | 50 | 1 | Th | ree
3 | | May
32 21 | 0910 | - | - | - | - | - | 8 | 23 | 5 | 8 | 1 | 4 | 13 | - | - | - | - | - | - | 31 | - | 18 | | 2+ | 3 o | 3- | | 33 30 | 0822 | 31/06xx | sc | m | 5+ | 40 | 32 | 26 | 1 | - | - | 3 | - | - | - | • | - | - | - | 58 | 11 | 44 | | | 1+
4- | | | June 34 03 04 05 35 06 | 0457
2029 | 07/03xx
07/03xx | _ | ms
m | 6-
50 | 4+
4+ | -
- | 3 | 7 | 46 | 1 | - | - | - | - | - | - | 4 | - | 3 | 1 2 | 2 | | 5-
6-
4+ | 4-
5+
4-
50
20 | 4-
36
5- | | 07
36 15 | 1358 | | sc | m | 5 0 | - | 6 | 17 | 18 | 11 | 1 | 2 | 5 | 1 | 1 | _ | _ | _ | _ | 23 | _ | 13 | | | 3 ₀ | | | 37 24
38 25
26
27 | 0340
0046 | -
27/01xx | sc | ms | 40
70 | -
5+ | 6 | 24 | | 7 | 1 | - | 11 | | - | | - | | - | 30 | 12 | 15 | | 40
5-
50 | 3+
4- | 4-
3+
6+ | | 39 29
40 30 | 2346
0528 | 01/10xx
01/22xx | | s
s | 8+
8+ | 6+
7- | 45 | - 9 | - | 1 | - | 3 | 5 | - | - | - | - | - | - | -
54 | 1
12 | | | | 10
6+ | | | July
41 01 | 1747 | 01/24xx | sc,g | ms | 7+ | 6- | 9 | 21 | 16 | 10 | - | 5 | 2 | - | 1 | | - | - | - | 30 | 2 | 7 | | 7+ | 7+ | 7- | | 42 02
43 03 | 0857
0150 | 03/15xx
03/15xx | | s
ms | 8o
6- | 50
5- | 42 | 15
- | 2 | - | - | 4 | - | - | - | - | - | - | : | 57 | | 42
- | | | 10
4+ | | | 44 04
45 05
06 | 2342
0042 | -
05/15xx | sc
sc | ms
ms | 7+
7+ | -
5 - | | 19
24 | | 14
4 | | 1 | 3
6 | | 1 | 1 | 2 | - | - | | | 14
21 | | 5- | 1-
7+
3- | 60 | | 46 16 | 0714 | - | sc | _ | 40 | - | 28 | 26 | 3 | - | - | 5 | 1 | _ | _ | - | - | _ | _ | 54 | 2 | 44 | 53 | 1+ | 0+ | 3 | | 47 19
48 | 0519
1344 | - | sc
sc | m
m | 5 -
5 - | - | | | 17
17 | | | - 1 | 2
5 | 3 | - | - | - | - | 1 | | - | 2
27 | | | 3 0 | | | 49 22 | 0419 | 23/06xx | sc,g | ms | 6- | 40 | 15 | 29 | 13 | 2 | - | 4 | - | - | - | - | 1 | - | | 34 | 6 | 34 | 38 | 2- | 30
3+
5- | 4 | | 23
50 27 | 1959 | - | sc | - | 4 o | - | 27 | 35 | 2 | - | - | | _ | - | - | - | - | - | - | 62 | - | 41 | 56 | 0+ | 10
2- | 0 | | Aug.
51 03 | 1557 | 04/03xx | sc | ms | 6+ | 5+ | 53 | 11 | - | 1 | - | - | - | - | - | - | - | - | - | 64 | 8 | 55 | 69 | 3- | 10
- 20 | 2 | | 52 06 | 0508 | 06/2 4 xx | sc | ms | 6- | 4+ | 26 | 28 | 5 | 4 | - | - | 2 | - | - | - | - | - | - | 54 | 7 | 42 | 53 | | 4+
20 | | | 53 09 | 1347 | - | sc | m | 5- | - | 34 | 13 | 6 | - | - | . 2 | 8 | - | 1 | - | - | - | - | 47 | - | 41 | 63 | 40 | 3+ | 2 | | 54 13 | 0617 | 13/21xx | sc | ms | 6- | 4 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 3 | - | 4+ | - 5+ | • | | 55 21 | 0248 | 21/08xx | sc | m | 5+ | 40 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | 40 | 5+ | - ; | | 56 29
57 30 | 1909
1920 | 30/21xx
30/21xx | | ms
ms | 7-
7- | 50
50 | 6
51 | | 25 | 19 | - | 3 | 1
3 | 1 | - | 1 | - | - | - | 16
60 | | |
-
68 | | + 1+
- 6· | | | 58 31
59
60 | 1229
1414
1812 | 01/15xx
01/15xx
01/15xx | g | ms | 70
70
70 | 50
50
5+ | -
-
26 | -
-
19 | - 3 | - 4 | -
-
3 | 2 | -
-
7 | - | - 1 | - | - | : | - | -
-
45 | | -
2
28 | -
-
40 | | o 3-
- 6- | | | Sept. 61 02 62 03 | 0314
1233 | 04/06xx
- | sc
- | s
s | 9-
9- | 6 +
- | 35 | 27 | 2 | - | - | 1 | - | - | - | - | - | - | - | 62 | 18 | | 70 | 3 | - 6d
- 6 | 9 | 2. I-2 O 2. ## NETIC STORMS DURING 1957 | | | | | | | | | | | | | 1 | , | |----------------------|--------------------------|-----------------------|---|---|-------------------------------------|---|--|--|--|----------------------------|----------------------------------|----------------------------|------------| | 8 | ∑Kp | Ap | Kp Interval
1st Kp:4-
Date/Interval | Time Where
3 Consecutive
Kp: 4-
Day/Interval | D | н | z | Onset | End | Max,
Kp | Obs. | Range of Starting
Times | References | | 50
2- | 27-
18+ | 25
10 | 02/4 | 03/2 | 22
2
12 | 118
80
156 | 45
15
36 | 0909
0910
0910 | 03/01xx
03/03xx
03/06xx | 5
5
5 | Fr
Ho
Tu | - | | | 4-
5-
20 | 210
34-
22- | 13
31
15 | 09/5 | 11/2 | 140
41 | 1180
294 | 710
369 | 09/1224
10/06xx | 11/17xx
11/01xx | 6
5 | Co
Si | 09/12xx - 10/06xx | | | 9-
2+
3+ | 390
39+
310 | 82
70
26 | 21/3 | 22/7 | 95
625
5
25 | 820
103
270
329 | 650
625
110
89 | 21/1255
21/1255
21/1255
21/1256 | 24/06xx
-
21/01xx
24/00xx | 9
-
7
7 | Fr
Gr
Ho
Tu | 0800 - 1255 | 32,34,52 | | 50
40 | 29+
27- | 27
22 | 24/7 | 25/4 | - | - | - | - | - | - | | <u>.</u> | | | 40
3- | 27-
340 | 24
36 | 29/5 | 30/8 | 200
27
80 | 1300
126
666 | 820
79
496 | 0950
1313
13xx | 30/22xx
30/21xx
30/21xx | 7
5
7 | Co
Fr
Si | 0950 - 13хх | 37 | | 4+ | 180 | 12 | /- | | | | | | | | | | | | 5+
3+ | 330
35+ | 31
39 | 03/7 | 04/7 | 220
20
95 | 1290
91
1092 | 1030
82
512 | 1048
11xx
11xx | 05/18xx
05/23xx
05/20xx | 6
5
7 | Co
Fr
Si | 0003 - 11хх | | | 3-
3+ | 23o
37- | 15 | 12/7 | 13/8 | 26
12 | 112
98 | 56
35 | 12/1850
12/1851 | 14/09xx
14/09xx | 5
6 | Fr
Tu | 12/1850 - 13/0939 | | | 1- | 14+ | 43
8 | 12/7 | 13/8 | 340
81 | 1920
737 | 1040
540 | 13/04xx
13/04xx | 14/04xx
14/00xx | 7
7 | Co
Si | | 37 | | 60
20 | 30o
38o | 32
62 | 23/7 | 24/6 | 460
36
175
4
216
20 | 2100
194
35
200
1178
176 | 1180
212
135
30
1017
70 | 1806
1807
1806
1808
1807
1806 | -
25/04xx
-
24/14xx
24/20xx
24/15xx | 7
7
-
5
9
6 | Co
Fr
Gr
Ho
Si
Tu | 1806 - 1808 | 37,52 | | 5-
7-
3-
30 | 21-
55-
32+
21+ | 16
132
32
14 | 01/6 | 04/3 | 260
42
305
10
206
22 | 1480
604
68
420
1376
330 | 940
438
325
75
1017
81 | 01/1000
01/1609
02/02xx
01/1600
01/1245
01/1609 | 04/15xx
02/09xx
-
04/06xx
03/21xx
04/08xx | 7
9
-
7
8
7 | Co
Fr
Gr
Ho
Si
Tu | 01/1000 - 02/02xx | 37,52 | | 5-
20
30 | 30+
40-
24- | 25
58
17 | 09/2 | 10/7 | 270
28
165
4
229 | 1570
253
43
200
1251
188 | 950
238
160
35
849
62 | 0023
0023
00xx
0025
0023
0023 | 11/06xx
11/07xx
-
11/07xx
11/05xx
11/08xx | 7
6
-
6
9 | Co
Fr
Gr
Ho
Si
Tu | 00xx - 0323 | | | 4+
5+
3- | 18+
340
24- | 11
37
15 | 15/8 | 17/1 | ." | - | - | - | - | - | - | 15/1938 - 16/1600 | | | 4-
10 | 18+
29+ | 11
31 | 24/7 | 25/6 | 19
105
12 | 980
89 | 45
580
29 | 0130
00xx
0130 | 25/16xx
25/19xx
25/16xx | 5
8
5 | Fr
Si
Tu | 00xx - 0130 | | | 4-
70
1+ | 20+
36+
37- | 13
44
58 | 26/5 | 28/7 | 36
160
7
90 | 222
47
210
1150 | 246
95
35
743 | 26/1050
27/1136
27/1200
28/0336 | 30/09xx
-
30/09xx
30/05xx | 6
-
6
8 | Fr
Gr
Ho
Si | 26/1050 - 29/1315 | | | 60°
3+ | 44o
25o | 77
21 | 29/2 | 30/3 | 360
310
21 | 1430
48
169 | 990
155
50 | 29/0337
29/0336
29/0337 | 30/05xx
-
30/11xx | 7
-
7 | Co
Gr
Tu | | | | 50 ^
1- | 34+
26o | 37
27 | 05/1 | 06/5 | 21
7 4 | 107
931 | 71
558 | 05/1000
05/10xx | 06/12xx
06/15xx | 5
8 | Fr
Si | 0707 - 10xx | 34 | | 6-
3+ | 22-
250 | 18
17 | 15/8 | 16/3 | 42
14 | 302
62 | 178
39 | 2048
2048 | 19/10xx
16/12xx | 7
5 | Fr
Tu | - | | | 8- | 380 | 55 | 17/2 | 20/3 | 290
10
62
31 | 62
235
299
245 | 135
90
149
59 | 17/1135
17/1137
17/1135
17/1136 | -
20/12xx
18/06xx
20/09xx | -
6
6
7 | Gr
Ho
Si
Tu | 17/1135 - 18/15xx | 10,37,52 | | 50
40
2+ | 350
420
23- | 42
60
14 | | | 240
96 | 1490
1144 | 1080
624 | 18/1500
18/15xx | 20/00xx
20/13xx | 7
8 | Co
Si | | 10.37 | | 30
3- | 29-
26+ | 23
20 | 26/5 | 27/4 | 46 | 4.3 | 421 | 26/0201 | 27/10xx | 6 | Si | | | | | | | | | | | | | | | | | | | Serial
No. | Date | Onset | End | Туре | Max.
Int. | Max.
Kp | Average
Storm
Kp | A | В | c | מ | E | x | si | b | bs | bp | bps | pt | pg | 4 | 67 | 5 | 50 | 1 | | Thre | e-hour | Gr. 1 | |---------------|----------------------------|------------------------------|--|--------|----------------|----------------------|------------------------|--------|---------|--------------------|---------|------------------|------------------|--------------------|---|----|----|-----|----|----|---------|------------------|---------|----|----------------|----------------|----------------------------|------------------|----------------------------| | 63 | Sept.
04
05 | 1300 | 06/06xx | sc | s | 90 | 6+ | 52 | 8 | 3 | - | - | 2 | _ | - | - | - | - | - | - | 60 | 18 | 50 | 72 | | | 2+
7- | | 8+
5- | | 64 | 06 | 1120 | 07/09xx | sc,g | ms | 6- | 4+ | 12 | 26 | 12 | 6 | 2 | 1 | 5 | _ | _ | _ | _ | - | _ | 39 | 4 | 25 | 40 | 5- | 5- | 2+ | 5- | 6- | | | 07
12
13
14
15 | 2154
0046 | 15/06xx
15/06xx | | s
s | 9-
9- | 5+
5+ | | 12
6 | | 2 3 | | 1 2 | -2 | | - | 1 | | -6 | - | | 1
16 | | | 2-
8-
30 | 2-
8+
3+ | 20
1+
9-
5+
20 | 20
9-
6+ | 20
20
70
5+
20 | | 67 | 21 | 1005 | 22/12xx | sc | ms | 7+ | 60 | 58 | 6 | - | - | - | - | - | - | - | - | - | - | - | 64 | 15 | 47 | 72 | 3- | 2- | 1+ | 7+ | 6 o | | 68 | 22 | 1344 | 23/00xx | sc | s | 9- | 7 o | 49 | 11 | 1 | - | 1 | - | 2 | _ | 1 | - | - | - | | 60 | 12 | 44 | 66 | 5- | 6- | 6- | 5- | 80 | | 69 | 23
24
25 | 0235 | 25/15xx | sc,g | s | 9- | 5+ | 39 | 6 | 3 | - | 6 | 1 | 10 | - | - | - | - | • | • | 45 | 3 | 27 | 39 | 50 | 5 0 | 8-
4+
5- | 5- | 8-
5+
40 | | 70 | 29
30
Oct.
01 | 0016 | 01/05жж | sc | s | 9- | 6- | 39 | 22 | 1 | 1 | - | - | • | - | - | - | - | - | • | 61 | 18 | 48 | 73 | 40
6+ | 5+
6- | 50
5+
30 | 4 +
6- | 80
50
4- | | 71 | 02
03
04
05 | 1252 | - | sc | m | 5- | - | 1 | 2 | 18 | 40 | 2 | - | 2 | - | - | - | - | - | - | 3 | - | 3 | - | 3-
30 | 20
30 | 2-
1+
2+
2- | 3+
3- | 3-
4-
2+
20 | | 72 | 06 | 2055 | - | - | | | - | - | 6 | 18 | 28 | - | - | 4 | - | - | - | - | | - | 6 | - | 3 | - | l | | 1 ₀ | | 0 0 | | 73 | 09
10 | 1329 | 15/21xx | sc | • | 40 | 4- | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | 1 | 2 | - | | | 2+
40 | | 2+
2+ | | 74
75 | 13
14
15 | 0035
0440 | 15/01xx
15/01xx | | ms
ms | 6+
6+ | 5-
5- | -
5 | -
21 | 14 | -
16 | - 4 | -1 | 2 | - | - | - | 1 | - | - | -
26 | 7 | 3
21 | | 4+ | 6+ | 30
6-
2- | 5 0 | 3-
4+
30 | | | 21
22
23 | 2241 | 23/02xx | sc,g | ms | 7- | 4 o | 40 | 10 | 2 | - | 2 | • | 10 | - | 1 | • | - | - | - | 50 | 5 | 53 | 61 | 4+ | 3 o | 3-
4-
4- | 4- | 3 -
2 +
1 + | | | Nov.
06 | 1821 | 07/12xx | sc | ms | 7 o ' | 5o : | 59 | 4 | - | - | _ | 1 | - | - | - | - | - | - | - | 63 | 15 | 60 | 71 | | | 1+
3+ | | 20
3+ | | | 08
09
10
11 | 0726 | 12/20xx | g | m | 50 | 4+ | - | 8 | 19 | 32 | 1 | 3 | 2 | - | - | - | - | - | - | 8 | 1 | 3 | - | 40
50
40 | 4+
4+
4- | 4-
5-
40
40
3- | 3+
4-
4- | 4-
4+
4-
40
40 | | 79 | 18 | 0952 | - | - | m | 5+ | - | - | 3 | 6 | 54 | 1 | - | - | - | _ | - | 1 | - | - | 3 | - | 2 | - | 4- | 4 o | 4 o | 4+ | 5+ | | 80 | 24
25 | 0901 | 28/15xx | sc,g | m | 5+ | 3+ | 3 | 4 | 10 | 41 | 1 | 2 | 2 | - | - | - | - | 1 | - | 7 | 2 | 6 | - | | | 2+
5+ | | 3-
3+ | | | 26
27
28 | 0155
0513
1410
1454 | 28/15xx
28/15xx
28/15xx
28/15xx | -
g | ms
ms
ms | 7-
7-
7-
7- | 50
-
50
50 | | 5
7 | 6
14
8
10 | 35 | 2
5
4
6 | 2
2
2
2 | 18
8
7
17 | - | - | 1 | 1 | - | : | 8 | 3
-
2
1 | 2 | - | 50
6+ | 50
6+ | 50
50
50 | 4-
50 | 4+
3+
40 | | | Dec.
01 | 0231
0336 | 02/15xx
02/15xx | | ms
ms | 6-
6- | 4-
4- | -
6 | -
22 | -
22 | - 9 | - 1 | 3 | 3 | - | - | - | - | - | - | 28 | 2
4 | 3
14 | | 5- | 6- | 5- | 4-
| 30
4- | | erval | 8 | ≚Кр | Ap | Kp Interval
1st Kp:4-
Date/Interval | Time Where
3 Consecutive
Kp [.] 4-
Day/Interval | D | Н | z | Onset | End | Max.
Kp | Obs, | Range of Starting
Times | References | |----------------|----------|--------------------------|----------------------|---|---|------------------------|----------------------------|--------------------------|---|--|------------------|----------------------|----------------------------|----------------| | 3- 2 0 | 2+ | 22- | 13 | 03/5 | 03/6 | - | - | - | | - | - | | 0335 - 0550 | | | 4- 5-
4+ 4- | 4-
3- | 31+
32- | 26
28 | 05/1 | 06/8 | 300
47 | 1180
477 | 750
3 2 6 | 05/0700
05/04xx | 06/23xx
06/21xx | 7
6 | Co
Si | 04/2108 - 05/0700 | 28,33 | | 2+ 3+ | | 27-
22+
27-
200 | 22
13
20
11 | 15/4 | 15/7 | 130
45 | 1000
281 | 630
365 | 15/0800
15/0800 | 15/21xx
15/20xx | | Co
Si | 0048 - 0800 | 28 | | 30 4+
3- 3+ | 4- | 27o
27o | 20
20 | 19/4 | 20/3 | - | - | - | - | - | - | | | 16,28,32,33,36 | | 20 10
5+ 6- | 1+
6- | 23+ | 18 | 30/3 | 30/6 | 71 | 647 | 366 | 30/0410 | 30/21xx | 7 | Si | | 28
37 | | | 40
2- | 41+
380
27- | 53
48
20 | 31/1 | 02/5 | 280
26
157
15 | 1900
134
1309
140 | 1090
127
861
48 | 31, 0300
31/02xx
31/0117
31/0115 | 02/22xx
02/13xx
02/21xx
02/15xx | 8
6
8
6 | Co
Fr
Si
Tu | 30/0410 - 31/1635 | 10,16,28,33,37 | # MAGNETIC STORMS 1957 | ecutiv
3 | re 3hr.
4 | - Kp's
5 | No. Kp
6 | · 5-, At
7 | Least One
8 | Kp 7+ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | | 2 | | F | Ąр | | | orm No.
Cable V | |-------------|--------------|-------------|-------------|---------------|----------------|-------|----|----|-----|-----|-----|----|----|---|----|----|----|-----|-----|-----|----|--------------------| | 6+ | 5- | | | | | | | | | | | | | | • | | | 82 | 70 | ·- | | 5 | | 8+ | 70 | 7- | 5+ | 6+ | 7- | 50 | 5+ | 5+ | | | | | | | | | | 16 | 132 | | | 14 | | • | | | | | | | | | | | | | | | | | | 77 | 21 | | | 24 | 55 | 42 | | | 28 | | 7- | | | | | | | | | | | | | | | | | | 150 | 83 | | | 40 | 55 | | | | 42 | | | | | | | | | | | | | | | | | | | 12 | 56 | | | | 45 | | 6+ | 7. | 80 | 9- | 60 | 5- | | | | | | | | | | | | | 102 | 135 | | | 61 | | 7- | 50 | 5- | | | | | | | | | | | | | | | | 145 | 112 | | | 63 | 160 | | | | 66 | | 6- | 5- | 80 | 8+ | 5 0 | 70 | 80 | 9- | 8- | 8 - | 8 - | 7 - | 7- | 50 | 5 | () | 50 | | 74 | 104 | 164 | 33 | 67 | | 5+ | 6- | 50 | 5 0 | | | | | | | | | | | | | | | 139 | 56 | | | 70 | | Onset | End ' | Гуре | Max.
Int. | Max.
Kp | Average
Storm
Kp | A | В | С | D | Е | х | si | b | bs | bp | bps | pt | pg | 4 | 67 | 5 | 50 | 1 | | | | r Gr | |------------------------------|--------------------------------------|---|------------------------|--|--|---|---|--|---|---|--|--|---|--|--|--|--|---|---|--|--|--|--|--|---|---|--| | 0335
0550 | - | - | m
m | 4-
4- | - | - | - | - | - | -
- | <u>-</u> | - | - | - | - | - | - | - | - | - | | | 2 0 | 2+ | 3+ | 3+ | | | 0331 | 06, 21xx | sc | m | 5- | 40 | - | 3 | 4 | 53 | 1 | 3 | 1 | - | - | - | 1 | - | - | 3 | 1 | 7 | - | | | | | | | 0048 | 18/12xx | sc | m | 5- | 3 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | 30
4- | 3-
4+ | 2+
5- | 2+
2+ | | | 0937 | 20, 23xx | sc | m | 5- | 3+ | 16 | 26 | 7 | 3 | 2 | - | 11 | - | - | - | - | - | - | 42 | 5 | 37 | 43 | | | | | | | 0410
0120
0514
1635 | 02, 15xx
02, 15xx | sc,g
g | m
nis
nis
nis | 5 -
6 +
6 +
6 + | 4-
5-
5-
5- | -
-
4 | | | 16 | 2
1
10 | -
2
4
4 | 1
14
5 | - 1 | -
1
-
2 | - | - | - | - | 11 | 1 | 7 | - | 40 | 5 0 | 6- | 5+ | | | | 0335
0550
0331
0048
0937 | 0335 - 0550 - 0331 06 21xx 0048 18 12xx 0937 20, 23xx 0410 30, 21xx 0120 02 15xx 0120 02 15xx 0514 02 15xx | 0335 | 0335 m 0550 m 0331 06 21xx sc m 0048 18/12xx sc m 0937 20, 23xx sc m 0410 30, 21xx sc m 0120 02 15xx sc,g ms 0514 02 15xx g ms | 0335 m 4- 0550 m 4- 0331 06 21xx sc m 5- 0048 18/12xx sc m 5- 0937 20/23xx sc m 5- 0410 30/21xx sc m 5- 0120 02 15xx sc,g ms 6+ 0514 02 15xx g ms 6+ | Onset Find Type Max. Max. Storm Int. Kp Storm Kp O335 m 4 O550 m 4 O331 06 21xx sc m 5- 40 O048 18/12xx sc m 5- 30 O937 20, 23xx sc m 5- 3+ O410 30, 21xx sc m 5- 4- O120 02 15xx sc g ms 6+ 5- O514 02 15xx g ms 6+ 5- | Onset End Type Max. Max. Storm Int. Kp Storm Kp 0335 m 4 | Onset c.m. Type Max. Max. Storm Rp O335 m 4 | Onset c.nu type Max. Max. Storm Kp 10335 m 4 | Onset End Type Max. Max. Storm Int. Kp Storm Kp O335 m 4 | Onset E.M. Type Max. Max. Storm Int. Kp Storm Kp O335 m 4 | Onset c.nu type Max. Max. Storm Kp Storm No. 2 | Onset Fint Type Max. Max. Storm Int. Kp Kp Storm Kp O335 m 4 | Onset End Type Max. Max. Storm Int. Kp Kp Storm Kp O335 m 4 | Onset E.M. Type Max. Max. Storm Int. Kp Storm Kp O335 m 4 | Onset c.m. Type Max. Max. Storm Rp 0335 m 4 | Onset Find Type Max. Max. Int. Kp Storm Kp O335 m 4 | Onset Find Type Max. Max. Storm Int. Kp | Onset Find Type Max. Max. Storm Int. Kp Kp Storm Kp O335 m 4 | Onset Find Type Max. Max. Storm Int. Kp Kp Kp A B C D E x SI b bs op bps pt pg 4 0335 m 4 | Onset End Type Max. Max. Storm Int. Kp Kp Kp A B C B E X SI b Bs bp bps pr pg 4 br 0335 | Onset End Type Max. Max. Storm Int. Kp Kp Kp A B C B E X SI b Bs B bps pr pg 4 67 5 0335 m 4 2 0550 m 4 2 0331 06.21xx sc m 5- 40 - 3 4 53 1 3 1 1 3 1 7 0048 18/12xx sc m 5- 30 1 0937 20,23xx sc m 5- 3+ 16 26 7 3 2 - 11 42 5 37 0410 30.21xx sc m 5- 4 5 10 44 2 2 1 - 1 5 8 3 0514 02:15xx gc ms 6+ 5 5 10 44 2 2 1 - 1 5 8 3 0514 02:15xx gc ms 6+ 5 111 1 7 | Onset End Type Max. Max. Storm Int. Kp Max. Storm Kp | Onset Entil Type Max. Max. Storm Int. Kp Kp Kp | Onset Entil Type Max. Max. Storm Int. Kp Max. Max. Storm Kp | Onset End Type Max. Max. Storm Int. Kp Max. Max. Storm Int. Kp Kp | Onset Entitype Max. Max. Storm Int. Kp Kp Kp | ## TABLE V-A MAJOR GEO | Mο. | Day | Onset
sc | 1st 3hr
5 | No 3hrs
Intervals | | | Number
7+ | | | | | 90 | 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | |-------|-----|-------------|--------------|----------------------|---|---|--------------|---|---|---|---|----|----|----|----|----|-----|----|-----|------------|-----|----| | Jan. | 21 | 1255 | 21, 5 | 8 | 1 | | | 1 | | 1 | 1 | | | | | | | 5- | 6- | 8- | 9- | 8+ | | Mar. | 01 | 1614 | 01/8 | 12 | 1 | 1 | | | | 2 | | ! | | | | | | | | | 5- | 66 | | | 29 | 1315 | 29, 5 | 6 | | 1 | | 1 | | | | ı | | | | | | 70 | 8 - | 6+ | 60 | 6 | | Apr. | 17 | 1136 | 17/7 | 3 | | | | 1 | | | | , | | | | | | | | 60 | 8 - | 6 | | June | 30 | 0528 | 30/2 | 10 | 1 | | 2 | 1 | 3 | 1 | | , | | | 6+ | 5+ | 8- | 80 | 80 | 8 0 | 8 + | 7 | | July | 02 | 0857 | 02, 4 | 4 | | | | | 1 | | | , | | | | | 5- | 80 | 6+ | 6- | | | | | 05 | 0042 | 04, 8 | 5 | | | 1 | | | | | ! | 50 | 5- | 7+ | 60 | 6- | | | | | | | Sept. | 02 | 0314 | 02/2 | 15 | 1 | 1 | 1 | 2 | 1 | | 1 | , | | | 60 | 6+ | 5 ⊬ | 70 | 60 | 8 - | 8 - | | | | 04 | 1300 | 04/5 | 9 | 1 | | | | 1 | 3 | 1 | 1 | | | | | | 8+ | 90 | 80 | 8+ | | | | 13 | 0046 | 13/1 | 6 | | 1 | | 1 | | 1 | 2 | | | 8- | 8+ | 9- | 9- | 70 | 60 | | | | | | 21 | 1005 | 21 4 | 23 | 5 | 1 | 1 | 3 | 2 | 1 | 1 | , | | | | | 7+ | 60 | 7- | 7- | 7- | | | | 29 | 0016 | 29/5 | 10 | | | | | 2 | 1 | 1 | 1 | | | | | | 80 | 9- | 8 + | 80 | | | 40 5+ | 8+
60 | ≗Kp
470
49- | Ap | Kp Interval 1st Kp?4- Date/Interval | Time Where
3 Consecutive
Kp-4-
Day/Interval | D | н | z
 Onset | End | Max.
Kp | Obs. | Range of Starting | References | |----------------------------------|----------------|---------------------------------|----------------------------|-------------------------------------|--|--|---|---|---|---|---------------------------------|--|----------------------------------|---| | 5+ 4+
2+ 2-
2+ 1+
60 40 | 60 | | | 00/0 | | | | | | | | | Times | | | 2+ 2-
2+ 1+
60 40 | | 34 o | 36 | 02/2 | 07/3 | 470
181
810
13
302
42
19 | 2460
884
91
340
2644
391
59 | 1640
854
800
75
1448
219 | 04/1300
04/1300
04/1300
04/1300
04/1300
04/1300
06/1121 | 07/05xx
07/05xx
-
07/05xx
07/05xx
06/08xx
07/09xx | 8
9
-
7
9
8
5 | Co
Fr
Gr
Ho
Si
Tu
Tu | | 10,16,22,23,28,33,
34,36,37,42,46,52 | | 6o 4o | | 20- | 11 | | | l " | 95 | 41 | 00/1121 | 07/USXX | 3 | 1.0 | | 28,33 | | 4 - 2. | | 15o
54+ | 7
160 | 13/1 | 15/3 | 400
104 | 2700
1344 | 2240
626 | 12/2400
13/0046 | 15/07xx
15/06xx | 8
9 | Co
Fr | 12/2154 - 13/0046 | 10,28,22,23,28,32,33, | | 2+ 30 | | 34-
22+ | 38
14 | | | 705
11
277
40 | 46
460
3766
471 | 240
100
1011
92 | 13/0047
13/0047
13/0047
13/0048 | 14/14xx
15/06xx
15/06xx | 9
9
8 | Gr
Ho
Si
Tu | | 16
34,36,37,42,46,52 | | 7- 7- | 7- | 390 | 74 | 21/3 | 24/6 | 480
154
475
12
330
18 | 2850
926
68
400
2606
275 | 1700
748
650
85
1516
80 | 21/0800
21/1005
21/1005
21/1005
21/0840
21/1005 | 25/16xx
-
-
24/14xx
24/21xx | 8
9
-
7
9
7 | Co
Fr
Gr
Ho
Si
Tu | 21/0800 - 21/1005 | 16,22,23,28,33,34
36,37,42 | | + 50 | 7 o | 49 o | 104 | | | - | - | - | 22/1345 | 25/15xx | - | Fr | 22/1345 - 23/0236 | 10,22,23,28,33,34 | | 7- 7- | | 58o | 164 | | | 40
- | 262 | 104 | 22/1345
23/0226 | 25/15xx | 8 | Tu
Tu | | 36,42,52
16,28,33 | | 30 3+
2- 10 | | 33-
23+ | 33
18 | | | | | | | | | | | , | | 9- 8+
50 40
2+ 4+ | 5- | 52-
42-
27+ | 139
56
21 | 29/1 | 02/3 | 750
55
465
17
419
30 | 3310
444
67
240
2907
288 | 1660
282
520
90
1332
124 | 27/0016
27/0016
29/0015
29/0017
29/0016
29/0017 | 01/06xx
01/05xx
-
01/05xx
01/05xx
01/09xx | 9
7
-
6
9
7 | Co
Fr
Gr
Ho
Si | 0015 - 0017 | 10,16,22,23,28,33
34,36,42.52 | | + 2-
i- 4+
i- 30
i- 3- | | 20+
250
22-
19+ | 12
19
12
10 | 03/5 | 03/8 | | - | | 29/0017 | - | - | Tu
- | | 33 | | o 0+ | 0+ | 4+ | 2 | - | - | _ | - | - | - | - | - | | | | | + 20
o 4- | 2+
3- | 15o
26- | 7
18 | 10/2 | 10/4 | - | ÷ | - | - | - | - | | 09/1329 - 14/0440 | 33 | | + 4+
+ 40
- 3+ | 40
50
20 | 290
400
20+ | 26
50
12 | 13/7 | 15/1 | 180
30
89
15 | 1040
115
873
120 | 810
128
474
46 | 14/0400
14/01xx
14/01xx
13/1530 | 15/01xx
15/02xx
15/01xx
15/03xx | 7
5
7
5 | Co
Fr
Si
Tu | | 22,28,33,42 | | 0 4- | 7- | 27+ | 28 | 21/6 | 22/5 | 20 | 116 | 95 | 21/2241 | 23/02xx | 6 | Fr | | 10.15.00.00.00.00 | | + 3-
5 40 | 4-
4- | 27-
25+ | 19
20 | | , : | 16 | 105 | 58 | 21/2241 | - | 6 | Tu | | 10,16,22,23,28,32
33,34,36,42,52 | | - 6-
- 2+ | 6+
10 | 19+
28~ | 24
31 | 06/7 | 07/5 | 115
26
205
7
66
11 | 740
182
29
190
373
203 | 390
67
170
55
298
67 | 06/1822
06/1821
06/1821
06/1821
06/1821
06/1821 | 07/21xx
07/12xx
-
07/14xx
07/20xx
07/15xx | 5
-
6
6
5 | Co
Fr
Gr
Ho
Si
Tu | | 10,22,23,28,33,36
42 | | 30
30
4-
3+
3-
20 | 4+
30
4- | 25-
33-
31-
28+
250 | 18
29
26
21
17 | 08/3 | 12/7 | 190
46 | 1000
334 | 620
450 | 08/0700
08/05xx | 12/20xx
12/00xx | 6
6 | Co
Si | 05xx - 0726 | 33 | | o 3e | 2+ | 30 o | 25 | 18/1 | 18/7 | - | - | - | - | - | - | | | | | o 3- | 2+
4- | 21+
33- | 12 | 25/2 | 28/6 | - | - | - | - | - | - | | | 28,33 | | 0 | • | - Ju | 30 | | | | | | | | | | | 10,16,22,28,32,3342,52 | | 3+ | 40 | 43-
37+
32- | 64
47
28 | 26/1 | 28/6 | 36
145
- | 178
53 | 94
170
- | 26/14xx
indefinite
26/1454 | 27/12xx
-
- | 6
-
- | Fr
Gr
Tu | 26/0155 - 26/1454 | 33
23,28 | | 2+ | 40 | 31 - | 29 | 01/1 | 02/6 | 170 | 1026 | 510 | 01/0230 | 02/21xx | 6 | Co | 01xx - 0336 | 16,22,33.42 | | 2 0 | 2 0 | 25- | 16 | - | • | 33 | 325 | 251 | 01/0233 | 01/23xx | 5 | Si | VIAA - 0000 | | | | 40
3+
40 | 37+
32-
31- | 47
28
29 | | | 145
-
170 | 53
-
1020 | 170
-
510 | indefinite
26/1454
01/0230 | -
-
02/21xx | 6 | Gr
Tu
Co | 26/0155 - 26/1454
01xx - 0336 | 33 | 2 2.12-3 # TABLE VI. CATALOGUE OF SOLAR-TERRESTRIAL EFFECTS DURING 1957 This table will include short wave radio fadeouts of importance 3 that lasted for 30 minutes or more, as well as S.W.F.'s that occur at the times of the major flares catalogued in Table I. All polar cap absorptions reported in the literature; Geomagnetic storms with a maximum $K_p > 5$; and Forbush decreases. A brief note of explanation of the Forbush decrease data is necessary. The only published list of Forbush decreases with onset time and other data is given in reference 32. This is limited to large decreases at Mt. Washington. The decreases indicated by a date but no UT starting time are from volume 16 of the Annals of the IGY (Ref. 50). The list of cosmic ray storms (Forbush decreases) given in reference 33 has been used, but only those with a decrease of 2% or greater have been included. The starting time is indicated by the date with the hour. This is at best an approximation based on the ΔT_2 shown on Figure 1 and given in Table II of of reference 33. The duration in that reference is given in days indicated by the superscript d in column 34 of the catalogue. In general, the flare-Forbush decrease association is taken from reference 33. The column headings together with any necessary description or definitions follow: Column 1 Date Column 2 Major Flare Serial Number from Table 2.I Column 3 Event Serial Number from Table 2.VIII ### FLARE DATA (Columns 4 through 8) A few minor or sub flares are given when a clear association with an SWF or other terrestrial effect has been made in the literature. Column 4 Flare Beginning Time Column 5 Flare End Column 6 Time of Maximum Intensity Column 7 Heliographic Position of the Flare Column 8 Flare Importance SHORT WAVE FADE (Columns 9 through 13) Column 9 Onset Column 10 Importance. S.W.F.'s are given an importance rating on a scale from 1- to 3+, based on the amplitude of the fade, duration of the event, and confidence in the reality of the event. Column 11 Type (S, SL, or G) the following classifications are used: S - SWF (S) - sudden drop out and gradual recovery Slow S - SWF (SL) - drop out takes 5 to 15 minutes and gradual recovery G - SWF (G) - Gradual disturbance fade irregular in either the drop out or recovery stage ### Column 12 Duration in Minutes Column 13 Wide Spread Index. The degree of confidence in identifying the event by individual stations is combined into an index of certainty that the event is geographically wide spread, ranging from 1 (possible - single station reporting) to 5 (definite - many stations reporting). ### SOLAR FLARE EFFECT (Columns 14 through 16) Preliminary reports of solar flare effects, sometimes referred to as a magnetic crotchet, have been published in the Journal of Geophysical Research, Reference 5. The SFE's recorded in this catalogue are limited to those listed in reference 4. As a "distinctly" SFE or an "unmistakable" SFE (Classes A and B). The list of the reporting observatories is given in Reference 4. ### Column 14 Beginning Time ## Column 15 Number of Observatories Reporting the Effect Column 16 Intensity. Strong effects, indicated by the letter "S", are marked by an asterisk in reference 4. Insofar as possible the SFE has been associated in time with a solar flare. ### POLAR-CAP ABSORPTION (Columns 17 through 22) Column 17 Onset Time. If reference 2 is listed in column 22 the starting time has been taken from that source. ## Column 18 Rise Time in Hours from Reference 2 ### Column 19 Duration in Hours Column 20 Absorption in db on the 30 Mc/s Riometer. Column 21 Probable Flare - day/beg. If a polar-cap absorption-flare, association is given in the literature the reference is underlined in column 22 Column 22 The Sources Checked during the preparation of this catalogue have been listed. ## GEOMAGNETIC STORMS (Columns 23 through 32) The geomagnetic storms listed in this portion of the catalogue are limited to those with a maximum $K_{\rm p} > 5$. A few minor storms have been included if one or more investigators associated it with a major flare, or it was preceded by a PCA and/or followed by a Forbush decrease. #### Column 23 Onset Time ### Column 24 End Time - Column 25 Type, the symbols g (gradual) and sc (sudden commencement) have been used. In a few cases both a g and an sc are indicated. In these cases, three or more magnetic observatories listed the storm with a sudden commencement. - Column 26 Maximum Intensity the symbols m (moderate K_p as great a 5) ms (moderately severe $K_p = 6$ or 7) and s (severe $K_p = 8$ or 9) have been used. ### Column 27 Maximum
Kp - Column 28 Number of Magnetic Observatories Reporting the Storm as an sc in reference 4 and/or 50. - Column 29 K_{p} . This is the sum of the 8 three-hour Greenwich day $K_{p}^{}(s_{\bullet}$ - Column 30 Ap from reference 4. - Column 31 Probable Flare day/beginning An entry in this column is based on one or more flare-storm correlations in one or more of the references listed in column 32. #### Column 32 Sources of flare associations ### FORBUSH DECREASE (Columns 33 through 37) - Column 33 Onset Time. The day and hour is given if one is published in the literature, otherwise the date only is given. - Column 34 Magnitude of the Decrease in Percent. A number of cosmic ray storms are listed in reference 33. The entries in this portion of the catalogue are limited to decreases of two percent or greater. - Column 35 Duration in Hours, unless designated by the superscript d which indicates a duration in days. - Column 36 Probable Flare (day/hour) An entry is given if a flare Forbush decrease association has been found in the literature. - Column 37 Sources, the numbers refer to the references. | | Major | | |] | FLARE | | | | | SHO | RTWAVE | E FADE | | SOLAR | FLA | |------------------------------|------------------------|--------------|------------------------------|------------------------------|----------------------|---------------------------|--------------------------|--------------------|----------------------|-----------------|---------------|------------------|---------------|------------|------------| | Date | Flare
Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
UT | Posit | ion | Imp. | Onset | Imp | Туре | Dur.
(Min.) | W.S.
Index | Beg.
UT | No.
Rep | | July
01 | | | | | | | | | | | | | | | | | 02 | 31 | | <u>0705</u> | 0805 | - | N09 | W 30 | 2+ | 0709 | 1 | S | 17 | 5 | | | | 03
04 | 32 | 92 | 0712
0830 | 0830
1145 | 0745
0840 | N14
N10 | W40
W42 | 3+
3+ | 0729
0830 | 2+
3 | s
s | 61
44 | 5
5 | | | | 05 | ı | | | | | | | | | | | | | | | | 08
15 | 35 | | | 0802
re repor | | N14 | W41 | 2+ | 0536
2012 | 1+
3- | s
sL | 24
138 | 5
5 | | | | 16
19 | | | 0731
1742 | 0845
2008 | 0744
1804 | N31
S33 | E 80
W29 | 1+
2- | 0721
1740 | 3
3 | SL
SL | 59
105 | 5
5 | | | | 20 | | | No flar
2358 | e report
<u>2500</u> | ed
2426 | N29 | E 18 | 2 | 1740
2407 | 3-
3 | s
sL | 120
60 | 5
5 | ļ | | | 21 | 36
37 | 103 | 0633
1320 | 0750
1442 | 0658
1337 | N30
N29 | E 15
E 12 | 2+
3 | 0647
1335 | 3
2+ | s
s | 60
4 5 | 5
5 | 1334 | 16 | | 22
24 | 40 | 109 | 0607
1712 | 0727
1801 | 0625
1737 լ | N29
S 24 | E 02
W27 | 2+
3 | 0618
1727 | 3-
3 | s
- | 42
113 | 5 | | | | 24
25
27
28 | | | <u>1801</u> | 2025 | 1828 J | | | | 1759 | 3- | S | 81 | 5 | | | | Aug.
01
02
03
04 | | | 0516
1432
1721
1612 | 0727
1448
1735
1639 | 0608
1436
1723 | N34
N26
N26
S 27 | W06
E32
E17
W48 | 2+
2
1+
1 | 1435
1720 | 2-
2 | s
s | 15
40 | 5
5 | | | | 06
08 | 42 | | 1116 | 1257 | 1134 | N27 | W57 | 2+ | 1119 | 2 | SL | 51 | 5 | | | | 09 | | | 0204
0617
1330 | 0237
0720
1442 | 0213
0629
1355 | N26
S 09
S 33 | W59
E 76
W77 | 1
2
1 | 0153
0615
1340 | 3 -
3 -
3 | S
SL
SL | 47
35
200 | 5
5
5 | | | | 10
13 | | | No fla | re report | ed | | | | 0100 | 3 | SL | 60 | 5 | 0128 | 11 | | 28 | 45
46 | 125
126 | 0913
2010 | 1404
2405 | 0955
2024 | S 31
S 28 | E 33
E30 | 3+
3 | 0917
2020 | 3
2+ | S
S | 138
18 | 5
5 | 2018 | 8 | | 29 | 47
48 | 1 | 0545
1031 | 0715
1201 | 0555
1052 | N24
S 25 | E 35
E 20 | 2+
3 | 0542
1039 | 3-
1+ | s
s | 48
16 | 5
4 | 2010 | · | | 30
31 | 49 | | 0620
<u>0544</u> | 0804
0616 | 0600
0551 | N26
N13 | E 22
E 03 | 2+
2 | 0620
0544 | 2
3 | s
s | 40
76 | 5
5 | | | | | 51
52 | 132 | 1257
1338 | 1557
1455 | 1312
1352 | N25
N12 | W02
W02 | 3+
2+ | 1303 | 3+ | S | 184 | 5 | | | | Sept.
01 | | | 0204 | 0224 | 0210 | N13 | w08 | 1+ | 0204 | 3 | s | 51 | 5 | | | | 02 | 53
55 | 135 | 0946
1045
1257 | 1030
1254
1346 | 0952
1049
1305 | N12
S31
N10 | W09
W36
W26 | 3
2+
2 | 0950
1020 | 2
1+ | s
s | 40
20 | 5
3 | | | | 03 | 56
57 | | 1313
0647 | 1410
0841 | 1316 | S 34
N14 | W36
W39 | 3
3 | 1259 | 2- | G | 68 | 5 | | | | 04 | 58 | 142 | 1412 | 1727 | 1429 | N23 | W30 | 3 | 1420 | 3 | S | 103 | 5 | | | | 06 | 59 | | <u>0751</u> | 0900 | 0803 | N23 | w66 | 3 | 0800 | 2- | SL | 60 | 5 | | | | 07
11
12 | 63
64 | 148
150 | 0810
0236
0703 | 0845
0722
0740 | 0823
0300
0713 | N16
N13
N09 | W90
W02
W15 | 2
3
3 | 0806
0244
0702 | 3
3
3- | S
SL
S | 36
100
32 | 5
5
5 | 0810 | 27 | | 13 | 65 | 152 | 1510
1410 | 1638
1505 | 1516
1422 | N11
N09 | W18
W32 | 3 2 | 1513
1416 | 2+
3- | S
S | 39
34 | 5
5 | 1514 | 32 | | 14 | | | 0223
0226 | 0321
0303 | 0231
0238 | N08
N11 | E 73
W39 | 2
2+ | 0228 | 3 | a | 35 | E | | | | 15
16 | 66 | | 0333
1451 | 0418
1709 | 0336
1459 | N07
N08 | E 69
E 48 | 2
2+ | 0327
1458 | 3
1+ | S
S
SL | 83
22 | 5
5
5 | | | | 17
18 | 67
68 | | 0416 | 0945
0720 | 0807
0633 | N23
N23 | E 28
E 13 | 2+
2+ | 0411
0630 | 2+
1+ | s
s | 49
20 | 5
5 | 0630 | 10 | | | 69 | 160 | 1026 | 1613 | 1325 | N23 | E 10 | 3 | 1030
1245 | 3
3- | G
SL | 104
95 | 5
5 | | 10 | | 19 | 70
71 | 161 | 1658
0350 | 2110
0555 | 1840
0410 | N23
N23 | | 3+
3+ | 1730
0359 | 3+
3 | S
SL | 43
54 | 5
5 | | | | 20 | 72 | ,,,, | 0744 | 1200 | 0800 | N23 | E 01 | 2+ | 0800 | 2 | S | 35 | 5 | 0803 | 9 | | 20
21 | 74 | 165
168 | 2117
0405
1330 | 2222
0558
1510 | 2123
0422
1335 | N07
N23
N10 | | 2
2+
3 | 2120
0410
1330 | 1+
3
3- | S
SL
SL | 21
32
60 | 5
5
5 | | | | 22 | | 170 | 1248 | 1458 | - | N08 | | 2+ | 1252 | 3- | s | 73 | 5 | | | | 23
25 | 1 | 1 | 0842 | 0916 | 0845 | S 26 | E45 | 1 | 0842 | 3_ | S | 34 | 1 | | | 2.11-1 # TABLE VI CATALOGUE OF SOLAR-TERRESTRIAL EFFECTS DURING 195 | | | ECTS | | | TOL | Abs. db | BSORPTION | | | | | | |----|----------------------|------|--------------|---------------------|------------|------------|-------------------------|-------------------------------------|--------------------------------------|----------------------|----------|------------| | ·- | No. Obs.
Reported | Int. | Onset | Rise
Time (hrs.) | | 30 Mc S | | References | Onset | End | Type | Ma
Int. | 1500 | 16 | 86 | 4.1 | 20/1100/3 | 2 . <u>32 .34 .52 ,56</u> | Jan.
21, 0800
21, 1255 | 23: 00xx
24: 06xx | sc
sc | s | | | | | | | | | | | | | | | | 42 | 13 | - | | | | | | | 29, 1313 | 30, 21xx | sc | nıs | | | | | | | | | | | Feb.
04, 0003 | 06/16xx | sc | ms | | 14 | 13 | - | | | | | | | 04, 1100
12, 1850 | 05/23xx
14/09xx | sc ,g | ms | | | | | | | | | | | 13/0939
23/1807 | 14/04xx
24/14xx | sc
sc | ms | | | | | | | | | | | Mar.
01, 1614 | 04_06xx | sc ,g | s | | | | | | | | | | | 10, 0 023
10, 0 323 | 10, 21xx | sc
- | nis | | | | | | | | | | | 15; 1938
16; 1600 | 16. 24xx | sc.g | ms
ms | | | | | | | | | | | 26/1050
27/1136 | 30/09xx
30/09xx | sc
sc | s
s | | | | | | | | | | | 29/0336
29, 1315 | 30/05xx
30/09xx | sc
sc | s
s | | | | | 1330
0800 | 14
12 | 65
66 | 3.9
3.2 | 03, 0825, 3 | 2 . <u>34,56</u>
2 | | | | | | 13 | 29 | | | | | | | | Apr.
15/2048 | 16/06xx | sc | ms | | :3 | 29 | S | | | | | | | 17/1136 | 20/06xx | sc | s | | | | | | | | | | | 18/1508
18/1538 | 20/06xx | sc ,g | ms
nis | | | | | | | | | | | | | | | | 13 | 21
27 | | | | | | | | | | | | | 0 | 24 | | 0200 | | 10 | 1 | 18/0810/1+
18/1353/2 | 34,47,52
26,56 | May | | | | | | | | | | | | | | 30, 0529 | 01 · 09xx | sc | ms | | | | | | | | | | | June
03, 0457 | 07/03xx | g | ms | | | | | | | | | | | | | | | | | | | 2215
0500 | 44 | 105
115 | -
5.0 | 1609/3
0236/2 | 52
2, <u>34,56</u> | | | | | | | | | 1000 | •• | .13 | 0.0 | 0629/2 | 2, <u>34,56</u>
<u>26,</u> 47,52 | 25, 0046 | 27/01xx | sc | ms | | | | | | | | | | | 30/0258 | 01/22xx | ъc | s | | EOMAC | SNETIC STO | ORMS | | | | 1 | F | ORBUSH | DECREASE | | |------------|-------------------------------|------------------|----------|----------------------------|----------------|-----------------|-----------------|--------------|-------------------|------------| | Max.
Kp | No. Final
Rep Ref.
4 50 | Σ Κ ₂ | Ap | Probable
Flare | References | Onset | Mag.
Dec. 'n | Dur.
Hrs. | Probable
Flare | References | | | | | | | | | | | | | | 9-
9- | 5
53 | 390
390 | 82
82 | 20, 1100, 3
20, 1100, 3 | 34, <u>52</u> | Jan.
21:1830 | 17 | 14h | 20 1100 | <u>32</u> | | 6- | 53 | 27- | 24 | | | | | | | | | 6ი
6ი | 16
5 | 33o
35+ | 31
39 | | | | | | | | | 6+
6+ | 43
35 | 23o
37- | 15
43 | | | | | | | | | 0+
7υ | 55 | 30o | 32 | 21/1605/ ? | <u>52</u> | | | | | | | 8+ | . 38 | 21 - | 16 | 28/ 0005/ 3 | <u>52</u> | | | | | | | 7-
7- | -
57 | 40-
10- | 58
58 | | | | | | | | | 60
60 | 17 | 18+
34o | 11
37 | | | | | | | | | 8 -
8 - | 18
33 | 20+
36+ | 13
44 | | | | | | | | | 8 -
8 - | 60
54 | 440
250 | 77
21 | 6- | 43 | 22- | 18 | | | | | | | | | 8- | 61 | 38 o | 55 | 16/1040 3 | <u>10.52</u> | | | | | |
| 7- | 36 | 350 | 42 | 17 1006 3 | <u>10</u> | | | | | | | 7- | 35 | 350 | 42 | 5. | _ | 29÷ | 28 | 6- | 3 | 32+ | 33 | 7 0 | 59 | 370 | 41 | 24 0838 3 | 34, <u>52</u> | June | | | | | | 8+ | 54 | 55- | 150 | 28 0658 3 | 10,16,23,28,52 | 28 xxxx | 3 | - | - | 29 | | T | T | | | | FLARE | | | | | SHOR | TWAVE | FADE | | SOL | |------------------------------------|-----------------------------|--------------|---|---|--|--|-------------------------------------|------------------------------|--|-------------------------------|-------------------------------|----------------------------------|-----------------------|-----------| | - 1 | Maj, Flare
Serial
No. | Event
No. | Beg.
UT | End
UT | Max.
UT | Posit | ion | Imp. | Onset | Imp. | Туре | Dur.
(Min.) | W.S.
Index | Beg
UT | | Jan.
03
04
07
08
10 | 3 | | No flar
1324 | 0200
e reporte
e reporte
1455
e reporte | ed
1 33 9 | S 21
N17 | | 1 3- | 0135
1516
1725
1330
0102 | 3-
3-
3
2 | SL
SL
S
SL
SL | 125
91
120
70
98 | 5
5
5
5 | | | 20
21 | 5 | 9 | 1100 | 1417 | 1119 | S 30 | W18 | 3 | 1113 | 1+ | - | 13 | - | | | 24
25
27 | 8
9
10 | 12 | 0520 | 0342
1354
e report
0537
e report | 0526 | N16 | W26
W31
W89 | 3 3 | 0240
1235
0320
0528
0742 | 2
2
3-
1
2+ | s
sL
s
s | (20)
35
60
20
44 | 5
5
4
1
5 | 01 | | 29
31
Feb. | //11 | 17 | 0358 | 0550 | 0436 | N24 | E 05 | 3+ | 0356 | 1 | G | 84 | 1 | | | 04
10
12 | | | 0819 | 0830 | - | S 23 | W72 | 2 | 0815 | 2 | s | 13 | 2 | 04 | | 13
21
23
28
Mar | 13 | 26 | <u>1605</u>
<u>0005</u> | 2205
0420 | 1930
0014 | N20
N18 | W33
W35 | ? | 0020 | 1+ | G | 110 | 4 | | | 01
10
15
16
26 | | | | | | | | | | | | | | | | 27
29 | 15 | | 1025 | 1400 | 1115 | S 15 | W40 | 3- | 1024 | 3 | s | 131 | 2 | | | Apr.
02 | | | 0255
No flar | 0515
e report | | S16 | W45 | 2 | 0250
1915 | 3 | G
SL | 120
105 | 4
5 | | | 03
06
08 | 17
18 | 40 | 0825
0616 | 1026
0830 | 0835
0622 | S14
S19 | w60
w02 | 3 | 0833 | 2 | G
SL | 35
48 | 5
3 | | | 11
12
15 | 19 | 50
54 | 1722
1850
1410
1040 | 1850
2010
1430
1300 | 1738
1916
- | S 23
S 25
N25
N30 | E 04
W73
E 90
E 85 | 3
2+
2
3 | 1731
1856
1354
1044 | 3
3+
3 | s
s
s | 64
89
126
76 | 5
5
5
5 | 1 | | 17 | 21 | 55 | 0338
1006
No fla | 0400
<u>1118</u>
re report | 0344
1022
ted | S16
N29 | E 80
E 76 | 2 3 | 0322
1004
1937 | 3
3
3+ | G
S
SL | 60
79
163 | 3
2
4 | | | 18
19 | | | 0431 | <u>0650</u> | 0459 | N28 | E 47 | 2 | 0430 | 3 | G | 100 | 1 | | | May
05
14
14
16
18 | | | No fla.
0222
1426
1228
0810
1353 | re repor
0230
1441
1301
0939
1422 | 0225
1426
1246
0813
1401 | S 20
S 12
S 10
S 11
S 25 | E 87
E 33
E 07
W15
E 25 | 1
1 +
2
1 +
2 | 0145
0222
1435
1243
0808 | 3-
3
3
2-
2 | s
s
s
s | 45
62
27
27
42 | 5
5
5
5 | 1 1 | | 30
June
01 | | | 2329 | 2356 | 2344 | S 25 | W44 | 2- | 2335 | 3 | SL | 77 | 5 | | | 03 | 22 | | 1040 | 1202 | 1047 | S 18 | | 3 | 1045 | 2+ | S | 20 | 5 | | | 04
05
15
19 | 23
24
25 | 82 | 0027
0859
1326
0730
0609
1609 | 0155
0950
1433
0840
0811
1649 | 0054
0902
1329
0743
0640
1613 | S 17
S 18
S 17
S 18
S 38
N 20 | W27
W43
E 62
E 24 | 2
2
2
3-
3
2+ | 0030
0900
132£
0735
0615
1608 | 3
3-
3-
2
2-
3 | SL
S
S
SL
SL
S | 72
30
26
30
41
44 | 5
5
5
5
5 | | | 22 | 27 | | 0236
0629
0838 | 0257
0705
0929 | -
0634
0850 | N23
S 33
N22 | W13 | 2
2
3 | 0229
0849 | 2
3- | s
s | 74
28 | 5
5 | | | 25
28
30 | 28
29
30 | | 0658
0814
0924 | 0950
0915
1332 | 0722
0828
1025 | N10
S 28
N09 | E 27
E 60
W03 | 3
3
2+ | 0708 | 2- | s | 20 | 5 | | # TABLE VI 1957 (CONTINUED) | E EFI | FECTS | | | POL | | ABSORPTION | | | | | | | |--------------|-------|----------------------|---------------------|------------------|-------------------------------|-------------------------|---|---------------------------------|-------------------------------|---------------------|----------------|----------------| | Obs.
rted | Int. | Onset | Rise
Time (hrs.) | Duration
Hrs. | Abs. db
30 Me/S
Riomete | Probable | References | Onset | End | Type | Max.
Int. | Max
Kp | | | | | | | | | | July
01/1747
02/0857 | 01/24xx
03/15xx | sc ,g | nıs
s | 7+
80 | | | | 03/0845 | _ | 48 | 6 | 0712/3+ | 22, <u>34,56</u> | 03/0150 | 03/15xx | sc | ms | 6- | | | | 03/1000 | 12 | 52 | 9.2 | | 2, <u>26,33</u> .45, <u>47,52</u> | 04/2342
05/0042 | -
05, 15xx | -
sc | ms
ms | 7+
7+ | | | | | | | | | | | | | | | | | - | | | | | | | 22/0419 | 23/06xx | sc,g | ms | 6- | | | | 24/2015
25/0100 | - | 27
12 | 2
Mod | 1712/3 | 22, <u>26,</u> 33,45, <u>47,52,56</u>
45 | | | | | | | | | 28/1500
28/2100 | | 12 | Weak | | 9
45 | | | | | | | | | | | | | | | 03, 1557
06, 0508 | 04, 03xx
06 24xx | sc
sc | ms
ms | 6+
6- | | | | 09 1245
09 1500 | - | 24 | 2.5 | - | 64
24 | | | | | | | | | 09/1600
09/2000 | | 50
69
24 | 3,1
m
2,5 | 0617, 2 | 2
45
36 34 | | | | | | | | _ | 09. 2245
28. 0400 | | 24 | 2,5
Weak | 0017, 2 | <u>26,34</u>
45 | 13, 0617 | 13, 21xx | sc | ms | 6- | | | - | 29, 0000
29, 1300 | | 27
58 | 3.2 | 28/2010/2+
29/1031-3 | 2. <u>34</u> .45, <u>56</u> .64
2,22, <u>26</u> , <u>32</u> ,33,34, <u>47</u> ,52, <u>56</u> | 29, 1909
29, 1920 | 30. 21xx
30. 21xx | g
sc | ms
ms | 7 -
7 - | | | | 1415 | 12 | 46 | 4.9 | 1257 _/ 3 | 2,26,34,56 | 31, 1229
31, 1414
31 1812 | 01 15xx
01/15xx
01/15xx | se .g
g
se .g | ms
ms
ms | 70
70
70 | | | | 1700 | 9 | 46 | 7.2 | 1045/2+
1313/3 | 56
(2).26,(34).47,52 | Sept.
02 0314 | 04, 06xx | se | s | 9- | | | | | | | | | | 03 1233 | - | - | s | 9- | | | | | | | | | | 04, 1300 | 06, 06xx | sc | s | 90 | | | s | | | | | | | 06, 1120 | 07 09xx | sc.g | ms | 6- | | | s | 0200
1200 | - | 33
18 | m
1.5 | 12, 0703, 2 | 45
22, <u>26</u> ,32,33,34,52, <u>56</u> | 12/2154
13, 0046 | 15:06xx
15:06xx | sc
sc | s
s | 9 -
9 - | | | _ | - | 1630 | 10 | 48 | 5 | 1330/3 | 34, <u>56</u> | 21, 1005 | 22, 12xx | sc | ms | 7+ | | | | 1700
1900 | 18 | - 63 | 5,1 | | 2
22,26,45,52 | 22 1344
23, 0235 | 23, 00xx
25, 15xx | sc
sc,g | s
s | 9-
9- | | | | | | | | | 2.Ⅵ-2 | -(2) | | | | | | GEOMAGN | ETIC ST | ORMS | | | | T | FOR | BUSH DEC | REASE | | |------------|-----------------|-------------|------------|--------------------------|------------------------------------|-----------------|--------------|------------|--------------------|------------------| | | Final
p Ref. | F.V | An | Probable
Flare | Defendance | | Mag.
Dec. | Duration | Droboble | | | 4 | 50 | ΣКр | Ap | riare | References | Onset | % | Hrs. | Probable
Flare | Reference | | | | | | | | | | | | | | - 30
57 | 55 | 43o
32+ | 83
55 | 30/0924/2+ | 16,22,28,36 | July
02/xxxx | 3.2 | 3d | | 22 | | - | - | 30 o | 30 | | _ , , | 03/xxxx | 0.5 | Ju | | 33
50 | | | | | | July | | | | | | 30 | | 31
45 | 24 | 15-
38- | 12
56 | 03/0712/3+
03/0712/3+ | 10,16,28,34
22,23,29,52 | 05/xxxx | 4 | 3d | 03/0832 | <u>29,33</u> | | | | | | | | 19/xxxx | (2.5) | 6d | 16/1742 | 33 | | | | | | | | | | | | | | 34 | 38 | 29+ | 2 6 | | 36 | | | | | | | | | | | | | 27/xxxx | 3 | 3 | 24/1712 | <u>29,</u> 33 | | | | | | | | | | | | | | 64
54 | 69
53 | 26-
330 | 27
31 | 01 0516/2+
04/1612 1 | 22,23,36 | Aug.
03/xxxx | 8 | 11 | Aug.
02/1432 | <u>29,33</u> | | ٧. | 00 | 330 | 31 | 04/1012 1 | 22, <u>23</u> ,36 | 06/xxxx | 2 | 3 | 03/1721 | 33 | | | | | | | | | | | | | | _ | _ | 33 o | 33 | | | | | | | | | | | ••• | ••• | | | | | | | | | 16
60 | -
68 | 22-
22- | 28
28 | 28/0913/3+ | 10,16,22,23.28,29,34,36, <u>52</u> | 29/2110 | 12.5 | 13 | 28/0913
29/1030 | <u>29,32,</u> 33 | | - | - | 30- | 36 | | | | | | | | | 45 | 40 | 30-
30- | 36
36 | 29 0545, 2+ | 34 | | | | | | | | | | | 29 1031 3 | 34 | 1 | | | | | | 62 | 70 | 49- | 102 | 31 1357, 3+ | 10 16 22 22 28 20 24 26 52 | Sept. | | | | | | | 10 | 43- | 102 | Sept. | 10.16,22,23,28,29,34,36,52 | 02/ xxxx | 4.5 | 5d | 31, 1357 | <u>29</u> .33 | | - | - | 54 0 | 135 | 02, 1313, 3 | <u>23</u> | | | | | | | 60 | 72 | 470 | 145 | 02 1257/2
02 1313/3 | 10,22,34
28,29,52 | 04/xxxx | 2.1 | 4 d | 02/1313 | 33 | | 39 | 40 | 340 | 36 | 03, 1412/3 | 16,23,36 | | | | | | | | | | . | 14
59 | -
72 | 150
54, | 7
160 | 11 0236 3
12 0236 3 | 10
16,22,23,28,29,36,52 | 13/0330 | 6.1 | 3 | 11/0236 | 29,32,33 | | | | | | 12, 1510-3 | 34 | | | ŭ | - 27 0230 | 40,32,33 |
 | 64 | 72 | 390 | 74 | 18 1658 3+ | <u>16,22,23,28,29,36</u> | 21/xxxx | 6 | - 1 | 8, 1658 | 29 | | | 66
39 | 49o
58o | 104
164 | 21/1330/3 | <u>16</u> | 22/xxxx | (6.6) | - 2 | 0/2117 | 33 | | | | | | | | | | | 5 | | | | | | | | FLARE | | | | | SHOF | TWAVE | FADE | | SOLAR | FLARE EF | FEC' | |--|-------------------|--------------------------|--------------------------------|--|------------------------------|----------------------------------|----------------------------------|------------------------|--|-------------------------------------|----------------------------|---|---------------------------------|------------|----------------------|------| | Date | Serial
No. | Event
No, | Beg.
UT | End
UT | Max.
UT | Posit | ion | Imp. | Onset | Imp. | Type | Dur.
(Min.) | W.S.
Index | Beg.
UT | No. Obs.
Reported | Int | | 26 | 75 | 173 | 1907 | 2345 | 1952 | N22 | E 15 | 3 | 1925 | 2+ | s | 100 | 5 | | | | | 29
30 | 76 | 176 | 1657 | <u>1750</u> | 1706 | N25 | W37 | 3 | 1700 | 3 | s | 40 | 5 | | | | | Oct.
08
10
13
14
16 | 78
79 | 180
181
182
185 | 1049
1630
0534 | 1135
1731
0641
0202 | 1100
1648
0539
0152 | N42
N25
N12 | W23
E 38
E 40
E 21 | 2
1+
2+ | 1056
1607
0541 | 3
3
1 | S
SL
S | 30
123
25 | 1
5
1 | | | | | 10 | 80 | 100 | 0413 | 0500 | 0425 | S 26 | E 20 | 3 | 0417 | 2 | SL | 30 | 5 | | | | | 19 | 81 | | 0603 | 0920 | 0639 | S 24 | W25 | 3 | 0620 | 1 + | SL | 55 | 5 | | | | | 20
21
22 | 82
83 | 190
194 | No fla
0911
1637
1212 | re report
1200
1804
<u>1314</u> | 0939
1642
1218 | S 25
S 26
S 25 | W31
W45
W52 | 2+
3+
3 | 0149
0945
1639
1215 | 3
3
3+
2 | G
S
S
S | 121
15
156
35 | 1
4
5
5 | 1644 | 12 | - | | 23
25 | 84 | | 0621
0943
1855 | 0645
1132
1928 | -
1900 | S 27
N25
N26 | W77
W44
W50 | 3
1+
1 | 0620
0948
1833 | 2
3?
3- | S
S
SL | 32
30
67 | 5
1
5 | | | | | Nov.
02
05 | 86
87 | 206 | 0904
1205 | 0955
1257 | 0918
1207 | S 21
S 24 | W16
W54 | 2+
3 | 0914
1207 | 2-
2+ | s
s | 26
14 | 5
5 | | | | | 06 | 88 | 208 | 0834 | 0900 | 0841 | S 28 | W67 | 2+ | 0833 | 3- | s | 29 | 5 | 0838 | 24 | _ | | 08
10
13
15
20
22
23 | 89
90
91 | 213
217
218 | 0606
0800
0517 | re report
0735
0925
0636
re report
0446
0925 | 0623
-
0537 | S 25
N19
N18
N31
N26 | E 65
W18
W45
W28
W54 | 3
3
3
2+
3 | 2328
0607
0834
0527
1000
0406
0757 | 3-
1
3?
1-
3
3-
2 | S
S
S
S
S
S | 114
18
21
51
50
33
40 | 1
5
3
3
1
5
5 | 0407 | 6 | - | | 24
25
26 | 93 | 219 | 0848 | 1202 | 0911 | S14 | E 37 | 3+ | 0901 | 3- | S | 32 | 5 | | | | | 29 | 94 | 224 | 0045 | 0600 | 0213 | N41 | E 63 | 3+ | | | | | | | | | | Dec
01 | | 226 | | | | | | | | | | | | | | | | 12
13
14
16 | 99
100
101 | 234 | 1750
No fla
1245
1125 | 1859
re repor
1450
1238 | 1806
ted
-
1140 | N15
N18
N17 | | 2+
3
3 | 1802
0156
1233
1129 | 1
3
3
1- | SL
SL
SL
SL | 28
49
67
33 | 5
5
5
5 | | | | | 17
18
19 | 102
103
104 | 238 | 0734
0408
0605
0757 | 1004
0550
0712
1015 | 0737
0500
0624
0801 | N20
N17
N17
N20 | E 20
E 20 | 2+
3
3
2+ | 0732
0500
0620
0757 | 2 +
1 +
2
3 | SL
G
S
S | 58
15
30
23 | 5
4
5
5 | 0800 | 11 | | | 20
21
25 | 105 | 242
257
258 | No fla
2232
1605
1812 | 2400
1630
1900 | ted
2251
1607
1822 | N24
N30
S 07 | E 06 | 3
1
1+ | 0757
2235
1628
1815 | 3
3+
3
3 | S
SL
S
SL | 57
65
39
47 | 1
1
5
5 | | | | | 28
31 | | 261 | 2229 | 2331 | 2230 | N25 | w50 | 2 | 2230 | 2 : | S | 30 | 5 | | | | | | | 1 | l | | | | | | Į. | | | | | i | | | 2.27-3 0 # 1057 (CONTINUED) Weak Weak Med. 0200 1600 2300 | | | T | ABL | EVI | 1957 (| CONTINUED) | | | | | | |---|----------------------|---------------------|----------|----------------------------------|-----------------------|---|-----------------|---------------------|------|--------------|-----------| | 3 | | | POLAF | CAP ABS | SORPTION | | | | | | (| | | Onset | Rise
Time (hrs.) | | Abs. db
30 Mc/S
) Riometer | | References | Onset | End | Туре | Max.
Int. | Maz
Kp | | | 26/2100
26/2315 | - | 24 | Weak
2 | 1907/3 | 45
2,26,33, <u>34</u> ,47,52, <u>56</u> | 29/0016 | 01/05 _{XX} | sc | sc | g | | | | | | | | | Oct.
14/0440 | 15/01xx | sc,g | ms | 6+ | | | 1300
2100
0630 | 22 | 64
24 | Weak
7.8
5 | 0911/2+
20/1637/3+ | 26
2,45
22, <u>26,32,33,34,47,52,56</u> | 21/2241 | 23/02xx | sc,g | ms | 7- | | | 0030
0100
0200 | 10 | 46 | Med.
2 6 | | 45
24
2 | Nov. | | | | | 45 45 45 31 0120 31 0514 31/1635 2.∇1-3 06/1821 Dec. 01_0336 19, 0938 07/12xx 28 15xx 28 15xx 28 15xx 28 15xx 28 15xx 02/15xx 21 10xx 02/15xx 02/15xx 02/15xx sc . g se sc sc.g g - 70 7-7-7-7ms ms ms ms ms ms 6- m 4- ms 6-6- ms | EO | MAGI | NETIC S | TORMS | | | | | FOR | BUSH DECF | EASE | | |----|------|-----------------------|--------------------------|----------------------|-------------------|--|----------------------------|-------------------|-----------|--------------------|---------------------| | ! | | Final
p Ref.
50 | ΣΚρ | Ap | Probable
Flare | References | Onset | Mag.
Dec.
% | | Probable
Flare | Reference | | | 61 | 73 | 52- | 139 | 26/1907/3 | 10.16,22,23,28,29,34,36,52 | 26/xxxx
29/xxxx | 8 | _ | 26/1907 | 27
29,33 | | | | | | | | | , | | | 20, 100. | <u>=0</u> ,50 | | | 26 | 34 | 400 | 50 | | | | | | | | | | 50 | 61 | 27+ | 28 | 20/1637/3+ | 10,16,22,23,29,34,36,52 | Oct.
21/xxxx
22/0030 | 10
8.2 | 10
8 | 20/1637
20/1637 | 29,33
32 | | | 63 | 71 | 19+ | 24 | 05/1205/3 | <u>10,22.23,</u> 28,36 | | | | | | | | 8 | 33 | 43-
43-
43-
43- | 64
64
64
64 | 24/ 0848/3+ | <u>10,16</u> .22, <u>23</u> .28. <u>52</u> | Nov.
25/xxxx
26/0200 | 6.8 | 20 | 24, 0848 | 50
32, <u>33</u> | | | 28 | - | 31- | 29 | 29, 0045/3+ | <u>16</u> ,22 | | | | | | | | | - | 270 | 20 | | | Dec.
19/1700
20/xxxx | 9.2 | · | 17, 0734 | 32. <u>33</u>
50 | | | 11 | - | 41 +
41 +
41 + | 53
53
53 | | | 31 _{/**} ***** | 2,6 | | 28 (2229 | 33 | # TABLE VII. CATALOGUE OF BALLOON FLICHTS ASSOCIATED WITH MAJOR SOLAR FLARES DURING 1958 A search of the literature reveals only 2 balloon flights during the first six months of 1957. The balloon flight program increased with the start of the IGY in July 1957. A total of 140 flights were reported to the World Data Center A (cosmic rays) and listed in the Annals of the IGY (Ref. 51). 54 of these flights were made in the USSR by A.N. Charakchian or S. N. Vernon Institute of Nucleus Physics Moscow State University; or Dr. Yu. G. Shafer, of the Yakutsk Filial Academy of Sciences. 72 of the flights by scientists of the free world and 34 by the USSR scientists were made within four days after a major solar flare; a polar cap absorption, a spectral emission of Type II (slow drift) or Type IV (broad band continuum). A bibliography of papers published in the scientific literature discussing 1957 balloon flights is given on page 2.VII-iii, and when applicable, referenced on Table VII. A description of the column headings follow: ### Column 1 Greenwich Date Column 2 Flare Serial Number. This refers to the major flare serial number in Table I. Minor flares are those associated with Type II, or Type IV spectral emissions, or Polar-cap absorption, listed in Columns 5, 6, or 7. Column 3 Beginning Time of the Flare Column 4 Flare Importance Column 5 Spectral Observations Type II Beginning Time Column 6 Spectral Observations Type IV Beginning Time Column 7 Polar-cap Absorption, Greenwich day/beginning UT ## BALLOON DATA (Columns 8 through 17) Column 8 Balloon Flight Serial Number Column 9 Launch Date Column 10 Time the Flight Reached Recording Altitude Column 11 Time at Altitude, Hours, Minutes. Column 12 Maximum Altitude. This is given in either kilometers or milibars as reported in reference 51. Column 13 Name of the Place Where Balloon was launched. Column 14 Geographical Latitude and Longitude. Column 15 Instrument Carried. Where: C = Single Geiger Counter SC = Scintillations Counter T = Double Coincidence Counter Telescope EM = Emulsion Pack I = Ionization Chamber Column 16 Group. These have been designated as follows. Bartol - Bartol Research Foundation, Dr. Martin A. Pomerantz MSU - Moscow State University A. N. Charakchian, or S. N. Vernon Minn. - School of Physics, University of Minnesota Dr. J. R. Winckler Yakutsk - Yakutsk Filial Academy of Sciences of USSR Dr. Yu G. Shafer Melbourne-Department of Physics, University of Melbourne, Dr. V. D. Hopper New York -Department of Physics, New York University Dr. S. A. Korff CIT - Norman Bridge Laboratory of Physics California Institute of Technology Dr. H. V. Neher UC - Department of Physics, University of California, Berkeley, Dr. Kinsey A. Anderson Chicago - Ennco Fermi Institute, University of Chicago, Dr. Peter Meyer, Dr. Gordon Lentz SUI - Department of Physics State, University of Iowa, Dr. J. A. van Allen, Dr. Carl McIlwain Column 17 Published Balloon Flight Data. References that discuss the data obtained during some of
the flights refer to the balloon flight bibliography, page 2.VII-iii. In many cases several of the flights are discussed in the reference. The number in Column 17 is not repeated for the later flights. In general, only large or outstanding changes in the radiation count are discussed. #### REFERENCES FOR TABLE 2.VII BALLOON FLIGHTS DURING 1957 - 1. Aizu, H., Y. Fujimoto, S. Hasegama, M. Koshiba, I. Mito, J. Nishimura, and K. Yokoi, "Heavy Nuclei in the Primary Cosmic Radiation at Prince Albert Canada, I, Carbon, Nitrogen and Oxygen," Phys. Rev. 116 (1959) 436-444. - Anderson, K. A., "Soft Radiation Events at High Altitude During the Magnetic Storm of August 29-30, 1957," Phys. Rev. <u>111</u> (1958a) 1397-1405. - 3. Anderson, K. A., "Ionization Radiation Associated with Solar Radio Noise Storm," Phys. Rev. Ltrs. 1 (1958), 335-337. - 4. Anderson, K. A., "Balloon Observations of X-rays in the Auroral Zone I," J. Geophys. Res. 65 (1960), 551-564. - 5. Anderson, K. A., "Solar Cosmic Ray Events During Late August 1957," J. Geophys. Res. 69 (1964), 1743-1753. - 6. Anderson, K. A., and D. C. Enemark, "Observations of Solar Cosmic Rays Near the North Magnetic Pole," J. Geophys. Res. 65 (1960), 2657-2671. - 7. Danielson, R. F., "An Attempt to Detect Energetic Gamma Radiation from the Sun," J. Geophys. Res., 65 (1960), 2055-2059. - 8. Erbe, H., Ph.D. Thesis, Max Planck Institut fur Aeronomie, Stuttgart (1959). - 9. Freier, P. S., E. P. Ney, and C. J. Waddington, "Lithium, Beryllium, and Boron in Primary Cosmic Radiation, Phys. Rev. 113 (1959a), 921-927. - 10. Freier, P. S., E. P. Ney, and C. J. Waddington, "Flux and Energy Spectrum of Cosmic-Ray Alpha Particles During Solar Maximum," Phys. Rev. 114 (1959b) 365-373. - 11. Freier, P. S., E. P. Ney, and P. H. Fowler, "Primary Alpha Particles Intensities at Sunspot Maximum," Nature 181 (1958), 1319-1321. - 12. Jain, P. L., E. Lohrmann, and M. W. Teucher, "Energy Spectrum of the Heavy Nuclei in the Cosmic Radiation Between 7- and 100- Bev/Nucleon, Phys. Rev. 115 (1959), 654-659. - 13. Lohrmann, E., and M. W. Teucher, "Heavy Nuclei and & Particles Between 7 and 100 Bev/Nucleon I. Interaction Mean Free Paths and Fragmentation Probabilities," Phys. Rev. 115 (1959), 636-642. - 14. McDonald, F. B., "Primary Cosmic Ray Proton and Alpha Flux Near the Geomagnetic Equator, "Phys. Rev. 109 (1958), 1367-1375. - 15. McDonald, F. B., "Primary Cosmic-Ray Intensity Near Solar Maximum," Phys. Rev. 116 (1959), 462-463. - 16. McDonald, F. B., "Study of Primary Cosmic Ray Alpha and Proton Energy Spectra, Geomagnetic Cut-off Energies and Temporal Variations," Nuovo Cimento, Suppl. VIII Ser. X (1958), 500-507. - 17. Meyer, P., "Primary Cosmic-Ray Proton and Alpha-Particle Intensities and Their Variation with Time," Phys. Rev. 115 (1959), 1734-1741. - 18. Neher, H. V., and Hugh Anderson, "Cosmic Ray Changes from 1954 to 1957," Phys. Rev. 109 (1958), 608. - 19. Neher, H. V., "Change of Cosmic Rays in Space," Nature 184 (1959), 423-425. - 20. O'Brien, B. J., A. J. Hertz, and J. H. Noon, "The Charge Spectrum of Light Elements at 41° N Geomagnetic Latitude," Nuovo Cimento Suppl VIII Series X (1958), 524-531. - 21. Pomerantz, M. A., S. P. Agarwal, and V. R. Potnis, "Balloon Flight Investigation of Primary Cosmic Rays During Solar Disturbances," J. Franklin Inst., 269 (1960), 235-244. - 22. Pomerantz, M. A., S. P. Agarwal, and V. R. Potnis, "Direct Observations of Periodic Variation of Primary Cosmic-Ray Intensity," Phys. Rev. 109 (1958), 224-225. - 23. Shafer, Yu G., "The Effect of Diminishing Solar Activity and Cosmic Ray Intensity from Measurements in the Stratosphere," Proc. (1959) Moscow, Cosmic Ray Conference 4 (1960), 71-77. - 24. Singer, S. F., "The Primary Cosmic Radiation and Its Time Variation, Progress in Elementary Particles and Cosmic Ray Physics, North Holland Pub. Co. 4 (1958), 203-335. - 25. Vernov, S. N., Tulinov, V. F., and A. N. Charakhchian, "The 27 Day Cosmic Ray Period in the Stratosphere," Soviet Physics, DOKLADY 3 (1958), 980-982. - 26. Vernov, S. N., B. E. Samosudov, V. F. Tulinov, A. N. Charakhchyan, and T. N. Charakhchyan, "Studies of Intensity Variations of Cosmic Radiation in the Stratosphere," Proc. 1959 Moscow Cosmic Ray Conf. 4 (1960), 49-60. - 27. Vernov, S. N., A. Y. Chudakov, P. V. Vakulov, and Y. I. Logachev, Soviet Physics, DOKLADY (1959). - 28. Webber, W. R., "The Charge Composition and Energy Spectra of Primary Cosmic Rays and the Energy Balance Problem," Nuovo Cimento Supp. VIII, Series X (1958), 532-545. - 29. Webber, W. R., Time Variations of Low Rigidity Cosmic Rays During the Recent Sunspot Cycle, Progress in Elementary Particles and Cosmic Ray Physics, North Holland Pub. Co. 6 (1962), 75-243. - 30. Winckler, J. R., "Balloon Study of High-Altitude Radiations During the International Geophysical Year," J. Geophys. Res. 65 (1960), 1331-1359. - 31. Winckler, J. R., and L. Peterson, "Large Auroral Effect on Cosmic Ray Detectors Observed at 8 gm/cm² Atmosphere Depth, Phys. Rev. 108 (1957b), 903-904. - 32. Winckler, J. R., and L. Peterson, "A Large Cosmic Ray Decrease Accompanying the Solar Maximum of 1957," Nature 181 (1958a), 1317-1319. - 33. Winckler, J. R., L. Peterson, R. Arnoldy, and R. Hoffman, "X-Rays from Visible Aurorae at Minneapolis," Phys. Rev. 110 (1958b), 1221-1231. 2.VII-1 TABLE VII BALLOON FLIGHTS ASSOCIATED WITH MAJOR SOLAR FLARES DURING 1957 | | | | | | 19, 1960) | | | | | | | | | | | | | | |-----------------|----------|--------------------------|-----------------------|--------------------|---|--|------------------------------|--------------------|---|---|---|---|--|---|---|---|-----------------------|------| | | | Notes | McDonald (1958, 1959) | Winkler (1960) | Vernon, et. al. (1956, 1559, 1960)
Winckler (1960) | Pomerantz (1960) | Pomerantz (1958) | Winkler (1960) | Mever (1989)
Neher (1956, 1959)
Winkler (1960) | | | Anderson (1958, 1964) Meyer (1959) Anderson (1964) Freter (1959 b) | Anderson (1960) | | Alzu, et. al. (1959) | Winckler (1958 b)
Meyer (1959) | | | | | | Group | ins | Minnesota | MSU
Minnesota
MSU
MSU | MSU
MSU
MSU
MSU
MSU
MSU
MSU
MSU
MSU
MSU | Bartol | Minnesota | Chicago
CIT
Minnessita
CIT
CIT
CIT | Chicago
Bartol
Bartol | Minnesota
Bartol
C
Bartol
MSU
New York
UC | Bartol
UC
Bartol
Bartol
Chicago
UC
Minnesota | Minnesota
UC
Bartol | Bartol
Minnesota
Minnesota
UC
UC | Minnesota
Chicago
Bartol
Bartol | Minnesota
Melbagne
Chicago | | | | | | Carried | T, CC | I. C, EM | 0, t. EM | 00000000 | H | C, I, EM | SC, EM
1
C, I, EM
1
1
1, T, C | sc. t. c
T
T | C. I. EN
T. T. C.
T. C.
C. BF3
C. BF3
T. C.
I. T. C | T
T T
SC, T, C
T, C | I, EM. PC
I, T. C | T
1 EM
1 T, C
1 T, C
T, C | | | | | | | | Geographic
Lat. Long. | *0X | N44.9 W93.3 | N 55.9 E37.5
N 44.9 W 93.3
N 68.6 E33.3
N 68.6 E33.3 | N68.6 E33.3
N55.9 E37.5
N55.9 E37.5
N68.6 E33.3
N68.6 E33.3
N55.9 W75.4
N56.6 E33.3 | | N44.9 W93.3 | NS3.2 W105.7
NR5.3 W88.9
NR5.3 W88.9
NP6.5 W88.9
NP6.5 W88.9
NR8.7 W33.9
NR8.7 W33.9 | N53.2 W105.7
N39.9 W75.4
N39.9 W75.4 | N44.9 W93.3
N58.7 W93.8
N58.7 W93.8
N69 E731.1
N32 W99
N58.7 W93.3
N58.7 W93.3
N58.7 W93.3 | N39.9 W75.4
N39.9 W75.4
N39.9 W75.4
N39.9 W15.4
N53.2 W105.7
N58.7 W93.8
N45.1 W93.2 | N44.9 W93.3
N58.7 W93.8
N39.9 W75.4 | N38.9 W75.4
N44.9 W93.3
N44.9 W93.8
N58.7 W93.8
N58.7 W93.8 | | N44.9 W93.3
S31.1 E136.8
N53.2 W105.7 | | | | LOCATION | | Place | Guain | Minneapolis, Minn. | Dolgoprudnaya, USSR
Minnespolis, Minn.
Loparskaya, USSR
Loparskaya, USSR | Liparikaya, USSR
Didoptudanya, USSR
Didoptudanya, USSR
Didoptudanya, USSR
Swarthmere, Pa.
Swarthmere, Pa.
Loparikaya, USSR | Swarthmore, Pa. | Minneapolis, Minn. | Pernce Albert, Canda
Thule Greenland
Mancapolas, Mun,
Thule, Greenland
Thule, Greenland
F. Curchill, Canda
Thule, Greenland | Prince Albert, Cutada
Swarthmore, Pa.
Swarthmore, Pa. | Minnespoils. Minn. Swarthmore. Pa. Fr. Churchill. Canda Swarthmore. Pa. Murmans. USR Brownword. Texas. Minnespoils. Minn. Fr. Churchill. Canda Fr. Churchill. Canda | Swarthmore, Pa. Fr. Churchill, Canada Swarthmore, Pa. Swarthmore, Pa. Prince Albert, Canada Fr. Churchill, Canada | Minnecpolis, Minn.
Fr. Churchill, Canada
Swarthmore, Pa. | Swarthmert - Pa. Muneapolls, Minn. St. St. Patl, Mun. Ft. Churchill, Canada Ft. Churchill, Canada Ft. Churchill, Canada | Minocapelis, Mino. Peroce Albert, Canada Swarfmore, Pa. | Minne-apolis, Minn. Weemera, Australia Prince Allwert, Canada | | | | T | 1 | Alntudr
Km mo | - | - | 01 | | | 10 | 100 | , | 01 01 | 12 10 | 01 00 | 10 10 10 | 10 10 29 | 9 1 | | | | | | | | 40 30 | 31 31
40
26 26
24 28 | 111 25
338 29
50 27
08 27
15 23
36
28
22 16 | 62 00 | 0 | - 46 - | 11 –
00 27
30 | 40
00
00
25
30
30
30
30 | 00 26
20 32
30 23
007 33 | 50 | 23 00 00 00 00 00 00 00 00 00 00 00 00 00 | | 8888 | | | | 215 | Time at | Altıtude
Hr. Min. | | 21 4 | 4040
8400 | 733010 | | - | 7 2 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | eo 4+ ∪ | 01 00 40 00 to 00 00 00 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 227 | 00047F | بەر ھە دى د | 04+0 | | | | BALLOON FLIGHTS | | F | | 0220 | 1029
0416
0830
0220 | 0557
0605
1210
0605
0605
0942
1200 | 0231 | 0217 | 1345
1450
0150
1428
1448
1050
1351 | 1414
1506
1546 | 0315
0400
-132
1151
1205
0736
1120
1120 | 0341
1130
1203
1632
1306
0212
2530 | 0126
0606
1104 | 1104
1559
1306
1055
1121 | 1829 | 0207 | | | | BAIL | Launch | Gr.
Dav. t | Feb. | June
06
July | 004 | 80 2 | 23 | 28 | Aug.
09
10
11
12 | 23 | 24
25
27
27 | 29
30
31 | Sept.
01 | 90
00
00
00 | 9 = 1 | 22 23 23 | | | | | Flight | Serial
No. | | 61 | т
п
ф
п | 7 9 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15 | 16 | 11.1
18.2
20.2
23.2 | 24
25
26 | 2 3 3 3 3 3 5 6 8 8 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 4 C | 4 t & & & & & & & & & & & & & & & & & & | | n 3 (- 30 | | | | 1.34 | 5 | Beg. UT | 1042 | · | 1000 | | | | | | | 0000
0000
1300
1500 | 07.1 | | | 1200 | 1804 | | | 1, 42 | TRAL | Type IV
Beg, UT | | | 0832 | | 1321 | - | | | | 0920 | | 1310 | 0244 | 1515 | | | | 0.100 | SPECTRAL | Type II
Beg, UT | 0407 | | | | | | | | | 2021.9 | | | | 0712
1516 | | | | | + | Imp | ÷ | en | e e | . 2 | | -2 | 2- | е с | 2 | | | r | | | 4446 | | | | FLARE | å5. | 0358 | 1040 | 0705
0712
1134
1154 | 0521 | 0633
1320
0953
1240 | 05.37 | 7111 | 0745 | 4 | 0913
2010
0545
1031
0620
0521 | 1338
1225
1045 | 1313
0647
1412
0751 | 0755
0223
0702
0236 | 1510 | 1451
06.24
1025 | 1900 | | | | Skried
N | g | ä | 32 33 | , en | 2583 | 7 | 6 | £ ; | ţ | 3 + + + 4 + 4 + 0 0 0 0 0 0 0 0 0 0 0 0 0 | 52 52 53 | 88 88 | 95
12
13
13
13 | 75 | 35831 | O, | | | | . Sirg | te | June 93 | 5 F 5 | .8 | 21 | 55 | 98 | 23 | 77 | 28
29
30 | Sept.
01 | 8 8 | 01
11 | 2 | 18 | | As in the previous tables, minor flares, small sunspot groups, plages, and the other solar and solar-terrestrial effects associated with any of the major entries are included if an observation is available. Descriptions or critical comments about many of the events listed in this catalogue are given as footnotes on the appropriate pages. A major entry, i.e., one qualifying under 1 through 6 above is indicated by an asterisk in the appropriate column. The column headings and explanations, where necessary, are given below: - Column 1 Event number, starting with one at the beginning of each year. - Column 2 Greenwich date of the event. #### FLARE DATA (Columns 3 through 8) These will include all 3 and 3+ flares (reference 9) as well as minor flares, and in some cases - sub-flares that may be associated with a solar or terrestrial event given in subsequent columns of the table: - Column 3 Beginning of the flare UT. If the start of the flare was observed, the beginning time is underlined. - Column 4 End time UT. If the end of the flare was observed, the time is underlined. - Column 5 Time of maximum, UT. - Column 6 Importance This is the value assigned to the flare in the McMath-Hulbert working list of flares (reference 9). - Column 7 The heliographic position is the arithmetic mean of positions reported in the IAU Bulletin and given in reference 9. - Column 8 Number of observations. #### SHORT WAVE RADIO FADEOUTS (Columns 9 through 14) Sudden ionosphere disturbances may be detected in a number of ways: short wave fadeouts (SWF), enhancement of low frequency atmospherics (SEA), increase in cosmic absorption (SCNA), sudden phase anomalies at VLF (SPA), and sudden signal enhancements at VLF (SES). The data included in this catalogue are limited to SWF's and includes all outstanding short wave radio fadeouts of importance 3 or 3+ that lasted for 30 minutes or more. In addition minor SWF's that occurred at the time of the flares catalogued in Columns 3 through 8 are included. The following data are given. # TABLE VIII. CHRONOLOGICAL CATALOGUE OF MAJOR SOLAR EVENTS DURING 1957 This table was prepared for publication by Dr. Prince and Miss Hedeman at the Mc-Math-Hulbert Solar Observatory. The entries include the following: - 1. All major flares that are listed in the McMath-Hulbert working list of solar flares with importance 3 and 3+. - 2. All great short wave fades of importance 3 or 3+ that last for 30 minutes or more. - 3. All great 10 cm bursts with a peak flux equal to or greater than 500 units $(10^{-22} \text{ Wm}^{-2} (\text{c/s})^{-1})$. - 4. The most active plages. (Produced 30 or more flares during disk passage.) - 5. The greatest sunspots (area ≥ 1000 millionth in the Mt. Wilson list). - 6. All spectral radio emission of Type II and Type IV. In addition, outstanding bursts of Type I and Type III have been included. - 7. Radio emissions at 200 Mc/s at the time of major events. - 8. Radio emissions at other frequencies. - 9. Polar-cap absorptions. - 10. Geomagnetic storms. The entries in this section of the catalogue will bring together in chronological order many of the entries already given in Tables I through VI. The exceptions are defined below: - (a) The major solar flare requirement for Table I is based on the list of flares reported in the IAU Quarterly Bulletin and includes some of importance 2+ and all flares of importance 3 and 3+. In Table VIII only flares of importance 3 and 3+ listed in the McMath-Hulbert Observatory working list of flares are included. - (b) The Table VIII requirement for "the greatest" sunspots is based on the Mt. Wilson list and only those with an area greater than a 1000 millionth qualify. On the other hand, Table II includes all sunspot groups from the Royal Greenwich Observatory list with a maximum area, during disk passage, equal to or greater than 500 millionth, and all groups with γ , and $\beta\gamma$, Mt. Wilson magnetic classification. - Column 9 Type (S, SL, or G). The following classifications are used: S-SWF (S): sudden dropout and gradual recovery Slow S SWF (SL): dropout takes 5 to 15 minutes and gradual recovery G-SWF (G): Gradual disturbance: fade irregular in either the dropout or recovery stage. - Column 10 Importance: SWF's are given an importance rating on a scale from 1- to 3+ based on amplitude of the fade, duration of the event, and confidence in the reality of the event. - Column 11 Beginning time UT. - Column 12 Duration in Minutes. - Column 13 Widespread Index. The degree of confidence in identifying the event by the individual stations is combined into an index of certainty that the event is geographically widespread, ranging from 1 (possible single station) to 5 (definite many stations). - Column 14 Number of Observations: The column gives the number of observatories reporting the event. ## SOLAR RADIO EMISSIONS AT 10 cm (Columns 15 through 19) - Column 15 Type: Two different classifications are used: (1) numerical, on a scale from 1 to 9, used in reference 52 and defined in "Descriptions Test and Index for CRPL-F, Part B. Solar-Geophysical Data," issued November 1962. (2) Alphabetical symbols used in reference 63. These are defined in the introduction of Table IV and illustrated on page 2.IV-iv. - Column 16 Beginning Time UT. - Column 17 Duration in Minutes. - Column 18 Time of Maximum Flux, UT. - Column 19 Peak Flux. # PLAGE DATA (Columns 20 through 28) The data in this section of Table VIII are taken from the McMath-Hulbert Plage Catalogues. The entries in this table are limited to: plage regions that were the source of 30 or more flares during disk passage, indicated in Column 20 with an asterisk, and/or plage regions associated with flares tabulated in Columns 3 through 8. The column headings, in general, self-explanatory, follow: - Column 20 McMath-Hulbert Plage Number. - Column 21 Greenwich Day of Central Meridian Passage. - Column 22 Mean Longitude. - Column 23 Mean Latitude. - Column 24 Average Intensity The intensity of calcium plages are estimated on a scale from 1 (faint) to 5 (very bright). The values given in this column are the average intensity during disk passage. - Column 25 Maximum Area In units of millionth of the area of the solar hemisphere. - Column 26 Number of Flares This is the total of all flares associated with the plage during disk passage. - Column 27 Age in Rotations The number 1 indicates that the plage is new. - Column 28 Identification This is the number of the plage region during the previous rotation. If two or more numbers are given in this column, those plages or parts of them combined to form the tabulated plage. ### SUNSPOT DATA (Columns 29 through 35) This portion of the catalogue is limited to the sunspots in the plage region given in column 20. - Column 29 Mt. Wilson Magnetic Classification from reference 67. - Column 30 Greenwich Day of Central Meridian Passage. - Column 31 Mean Latitude During Disk Passage. - Column 32 Mean Magnetic Field Strength H, in units of 100 gauss from reference 67. - Column 33 When seen: The first number gives the data the sunspot was first seen; the second number is the last date on which the spot was seen. - Column 34 Area (Mt. Wilson). - Column 35 Mt. Wilson Sunspot Numbers, of all spots located in the plage of Column 20. - Column 50 Beginning time UT. - Column 51 Duration in minutes. - Column 52 Time of peak flux. - Column 53 Peak flux. - Column 54 Observatory. ## POLAR-CAP ABSORPTION DATA (Columns 55 through 60) - Column 55 Greenwich Day. - Column 56 Onset Time. - Column 57 Time to rise to peak. - Column 58
Duration in hours. - Column 59 Intensity. - Column 60 Observer. - B Bailey - H Hakura and Goh - K Kiruna - L Leinbach #### GEOMAGNETIC STORMS (Columns 61 through 62) - Column 61 Greenwich Day. - Column 62 Beginning of the Storm. - Column 63 Duration of the Storm (h) indicates hours, (d) indicates days. - Column 64 Type - g gradual - sc- sudden commencement #### Column 65 Intensity - m moderate - ms- moderately severe - s severe - 2.VIII-vi ## DYNAMIC SPECTRUM DATA (Columns 36 through 41) Column 36 Type I Bursts. The following information is given: amount of activity indicated by the Symbols Is, b, G, g, or s; duration of the burst - beginning time, end time; and the intensity on a scale from 1 (weak) to 3 (strong). The activity symbols are defined as follows: At 100 Mc/s intensity 1 corresponds to 5 to 40 x 10^{-22} Wm⁻² (c/s)⁻¹, 2 = 40 to 200 x 10^{-22} Wm⁻² (c/s)⁻¹ and $3 \ge 200$ x 10^{-22} Wm⁻² (c/s)⁻¹ Is - A noise storm C - A noise storm with a slowly varying enhancement over a broad spectrum b - Single bursts g - Small group (< 10) of bursts G - Large group (≥10) of bursts s - Storm intermittent but apparently connected activity. Column 37 Type III bursts, activity, duration and intensity. Column 38 Type II (slow drift) bursts, duration, and intensity. Column 39 Type IV (broad band continuum) duration and intensity. Column 40 Observatory Column 41 Frequency Range 200 Mc/s DATA (Columns 42 through 47) Column 42 Type alphabetical symbols. Column 43 Beginning time UT. Column 44 Duration in minutes. Column 45 Time of maximum flux. Column 46 Peak flux. Column 47 Observatory. OTHER RADIO DATA (Columns 48 through 54) Column 48 Frequency Mc/s Column 49 Type | _ | Type I | DYNAMI | C SPECTRUM | I DATA | | | } | | 200 MC | S DATA | | | 1 | | OTH | ER RADIO | |-------------|--|-----------------------|----------------------|----------------------|------------------|----------------|--------------|--------------|---------------|--------------|----------------|--------|-------------------|------------|----------------------|-----------------| | vent
No. | Time/Max.
Int. | Type III
Time/Int. | Time II
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Туре | Beg.
(UT) | Dur.
(Min) | Max.
(UT) | Peak
Flux | Obs. | Freq.
Mc/s | Туре | Beg.
(UT) | Dur.
(Min) | | 1 | | | | | | | | | | | | | | | | | | 2 3 | | | | | | | CD | 0054 | 5 | 0055 | >>120 | тк | 9400 | CD | 0054 | 15 | | 4 | | | | | | | CA | 0100 | 120 | 0110 | >120 | TK | 169 | CD | 1016 | 9 | | | | | | | | | _ | | | | | | 81
81 | M
CD | 1020
1050 | 13
13 | | 5 | I in progress
all day | g1706/3
g1719/2 | *1703-
1712/3+ | * 1711-
2000/3 | H | 580-
100 | CD | 1703
1711 | 8
156 | - | >159
>159 | c
c | 460
167 | 6
6 | 1703
1706 | 181
110 | | 6 7 | C1737- | g1739/3 | *1734- | | н | 580- | | 1004 | | | | _ | | | | | | | 1741/2
I 1741-
S 1810/1 | g1740/1
g1741/2 | 1738/3+ | | | 100 | CD | 1734
1738 | 4
57 | | off-scale
- | C | 460
167 | CD | 1733
1734 | 83
92 | | 8 | | | | | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | 536
81 | E
E | 1057
1056 | 93 | | 10 | | | | | | | | | | | | | | | | | | 12 | | | | | | | CD | 1242 | 1.5 | | 130 | N | 536 | CD | 1229 | 58 | | 13 | | | | | | | SID | 1251 | 0.5 | | 200 | N | | | | | | 14 | | G2318/2 | *2328-
2331/3 | | <u>H</u> ,s | 145-
100 | | | | | | | 167 | CD | 2317 | 2.4 | | 15 | | | *2348-
2354/3 | | н, <u>s</u> | 135-
100 | | | | | | | 9400 | SD | 2335 | 2.5 | | 16 | | | 200 1/10 | | | 100 | | | | | | | | | | | | 17 | | G0358-
0403/3 | *0407
0424/3 | | s | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | | | | | 19 | I in progress
all day | G1552-
1554/2 | *1551-
1555/3+ | | н | 580-
100 | CD | 1552
1604 | 7
108 | | >74 | c
c | 460
169 | CD | 1551
1551 | 3
4 | | 20 | | g1540/1 | *1546-
1553/3 | | Н | 165-
100 | CD | 1538.5 | 2 | | | С | 167
167 | SID
SID | 1539
1546 | 2,2
1,9 | | 21 | | | | | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | | | | | 24 | I 2003 -
⁸ 2042/2 | G1606/2
g1631/2 | *2008
2011/2 | | н | 155-
100 | SD
E | 1630
1630 | 0.5
>270 | | >80 | N
C | 167
167 | CD
E | 1636
1827 | 3.5
257 | | 25 | , - | g-501/ 2 | 2012/ 2 | | | 200 | | 2000 | 72.0 | | | C | 1 | - | 1021 | 201 | | 26 | I 0002-
S0014/2
I 0032-
S0148/1 | G0012-
0014/2 | *0017-
0020/3+ | | <u>н</u> ,s
s | 140-
100 | CD | 0011 | 40 | 0030 | 240 | тк | 600
460
167 | CD
CD | 0001
0001
0001 | 101
33
29 | | 27 | | | *0036- | | s | | | | | | | | | | | | | 28 | | | 0047/3 | | | | | | | | | | | | | | | 29 | | | | | | | 1 | | | | | | | | | | | 30 | | | | | | | | | | | | | 1 | | | | observed over the frequency range 145 - 100 Mc. No observations exist at meter wavelengths at the time of the observations east. Type II burst. 15. No known flare, SWF, or 10 cm. bursts are reported at the time of the Type II burst on Jan. 24th at 2348 UT., therefore plage and spot data for this event are not available. The Type II burst covers a frequency range of 135 - 100 Mc, and was observed by both Ft. Davis and Sydney. No observations exist at meter wavelengths. Events No. 14 and No. 15 are so closely related in time, and are so similar, that they undoubtedly are related to each other. which is deciming... a return of the region which was described in events Nos. 2, 3, 5, 6, and 7. No distinctive events are reported at any of the single radio frequencies at the time of the flare. Three of the 10 stations start this storm later, with a sudden commencement, Feb. 4th at 00xx UT. Five stations start the storm even later-gradually-on 4th at 11xxUT. The 3-hr. Kp's indicate a rise in geomagnetic activity on Feb. 3rd. 16. This storm is difficult to explain. Except for the events on Jan. 24th, it is not preceded by any major solar activity. It 19. The Type II burst on Feb. 8th at 1551 UT. was observed by the storm of Jan. 2nd (Event No. 1). This great flare on Jan. 31st a USBO UT. occurs in a region which is declining in brightness and in activity. The plage is a return of the region which was described in event No. 2 and which was associated with events Nos. 2, 3, 5, 6, and 7. No distinctive events are reported at any of the single radio frequencies at the time of the flare. 580 - 100 Mc. Inverted U bursts were also reported at 1552 UT. At meter wavelengths, the radio event consists of a major burst and a long second part which is made up of bursts and a rise in base level. No known SWF is reported at the time of the Type II burst on Feb. 12th at 1546 UT. The related optical event is only a minor flare near the limb. The Type II burst occurred over the frequency range 165 - 100 Mc, and was preceded by an inverted U burst at 1540 UT. Only minor bursts are reported at the single radio frequencies at the time of the Type II 21. Four of the 15 stations that report this storm indicate a second SC on 13th at 0939 UT. 2. VII - 1R 2. **VIII** - 1R | | | | PL | AGE DA | TA | | | | | | SUNSPO | T DAT | Α | | | |------------------|----------------|------|--------------|--------------|--------------|---------------|---------------------|--------------------------|--------------------|----------------------|-------------------|--------------|-----------------------|------|-------------------------| | McM.
lage No. | CMP
Gr. Day | | Mean
Lat. | Ave.
Int. | Max.
Area | No.
Flares | Age in
Rotations | Ident. | MT.W.
Type | CMP
Gr. Day | Mean
Lat, | н | When
Seen | Area | MT.W.
No. | | | | | | | | | | | | | | | | | | | *3899 | Mar,
26.5 | 262" | S15 | 3.5 | 8,500 | 31 | 1 | NEW | lBpl | Mar.
26.3 | S14 | 34 | 19-1 | | 12216 | | 3907
3908 | 30.5
26.5 | 209 | S 18 | 3 | 5,200 | 25 | 6 | 3872 | dBl
101 | 29.7 | S16 | 14 | 28-4 | | 12235 | | | 20.3 | 262 | N28 | 3 | 1,800 | 7 | 1 | NEW | dβl
dβl
d≈pl | 25.9
26.6
26.7 | N27
N27
N30 | 10
5
9 | 25-31
27-1
31-1 | | 12225
12231
12239 | | 3907 | 3907 | | | | | | | | | | | | | | | | | *3923 | Apr.
12.5 | 38 | S 23 | 3.5 | 6,000 | 41 | 2 | 3888 | l∝pl
dβ | Apr.
12.1
12.1 | S 20
S 23 | 33
14 | 5-15
6-15 | | 12254
12258 | | 3918 | 3.5 | 157" | N14 | 3 | 3,000 | 2 | 1 | NEW | d×L | 3.9 | N15 | (10) | 6-9 | | 12255 | | *3923 | | | | | | | | | | | | | | | | | 3916 | 07,5 | 104 | S 24 | 3 | 5,500 | 24 | 3,5 | 3881 and
Part of | dBL
lBpd | 07.3
8.0 | S 26
S 20 | 12
14 | 7-13
1-12 | | 12259
12241 | | *3941 | 23.0 | 259" | N28 | 3 | 9,000 | 36 | 2 | 3884
3900 and
3908 | *lßyd | 22.9 | N28 | (20) | 19-27 | | 12285 | | *3941 | | | | | | | | | | | | | | | | | *3941 | | | | | | | | | ! | | | | | | | | 3944 | 22.5 | 266" | S16 | 3 | 7,500 | 23 | 2 | 3899 | apl | 22.1 | S12 | 22 | 19-28 | | 12283 | | *3941 | | | | | | | | | d ∕ ∂f£ | 22.9 | 912 | 15 | 24-28 | | 12292 | | | | | | | | | | | | | | | | | | 6 UT, is associated with est limb of the sun. The flare is reported as in vering. In the dynamic III bursts are reported al unclassified activity r wavelengths, the radio uperposed on an unusual e reported at any other of the SWF at 1915 UT. regence of activity since etrum observations are 0250 UT. The plage and spot data for this event are the same as that given for event No. 38. No dynamic spectrum observations are available at the time of the major flare on April 3rd at The piage and spot data or this event are the same as that given for event No. 38. No dynamic spectrum observations are available at the time of the major flure on April 3rd at 0825 UT. There are no outstanding events at centimeter or meter wavelengths from which Type IV radio emission might easily be inferred (except possibly at 9460 Me). This major flare
was followed by PCA (event No. 4D within a period of 5 hours. the time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in spot data for this event are not available. No known SWF is reported, and no 10 cm. observations were being made, at the time of the Type Il burst. No distinctive event is reported at meter wavelengths, although a major burst at 169 Mc. The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF. SWF, the time of the SWF. The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF. The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF. The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF. The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF. The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF. The time of the SWF on april 5th at 1408 UT. The associated flare data is incomplete, but its related to activity observed in Royal SWF. evidently occurred 10 minutes earlier than the start of the - This event does not fulfill any of the criteria for inclusion in this catalogue as a "major" solar event. It is given here, however, as a possible predecessor of the next PCA event (No. 46). The plage and spot data are the same as that given for event No. 38. No dynamic spectrum observations exist at the time of the SWF on April 15that 1408 UT. The associated flare data is incomplete, but is related to activity observed in progress in an active region at the west limb, (See note No. 38.) No distinctive event is reported at meter wavelengths at the time of the SWF. - Column 66 Number of stations reporting the storm. - Column 67 Maximum Ko during the storm. # TABLE VIII CHRONOLOGICAL CATALOGUE | | | | | FLARE | DATA | | | | SHO | ORT-V | VAVE RA | ADIO FA | DEGUTS | | | | 0 СМ. Е | ENTS | | |-------|------------|-------|------|-------|------|------|-------------|--------|------|-------|---------|---------|-------------------------|------|------------------|----------------------------------|---------------------------|------------------------------------|--------------| | Event | Gr. | Beg. | End | Max. | Imp | Pos | ition | No. of | Туре | | | | | | Туре | Beg. | | | Dook | | No. | Day | (UT) | (UT) | (UT) | - | | | Obs. | 1 | | (UT) | (Min) | Wide
Spread
Index | Obs. | .,,,, | (UT) | Dur.
(Min) | Max.
(UT) | Peak
Flux | | 1 | Jan.
02 | | | | | | | | } | | | | | | | | | | | | 2 | 02 | | | | | | | | ł | | | | | | | | | | | | 3 | 05 | 0116 | 0200 | 0116 | 2 | N17 | W31 | 1(1c) | SL | 2+ | 0050 | 63 | 5 | 2 | *CD | 0050 | 58 | 0056 | 501 | | 4 | 06 | *1038 | 1404 | 1128 | 3 | S 21 | E40 | 6(3c) | | | | | | | | | | | | | 5 | 06 | 1822 | | | 1- | N16 | W53 | 1(1c) | *s | 3 | 1702 | 53 | 5 | 9 | *2 | 1701. | 5 10 | 1703.5 | 700 | | 6 | 06 | 1822 | | | 1- | N16 | W53 | 1(1c) | G | 1 | 1802 | 63 | - | Mc | *2 | 1758 | 92 | 1827 | 585 | | 7 | 07 | 1830 | 1840 | | 2+ | N20 | W65 | 1(1c) | *s | 3 | 1725 | 120 | 5 | 8 | 3
6
1
1 | 1729
1729.3
1745.5
1752 | 180
3 15
5 3
1.5 | 1910
1737.5
1746.5
1752.5 | 17 | | 8 | 08 | | | | | | | | | | | | | | l | | | | | | 9 | 20 | *1100 | 1417 | 1119 | 3 | S 30 | W18 | 5(1c) | s | 1+ | 1113 | 13 | - | - | - | 1100 | 24 | - | 184 | | 10 | 20 | | | | | | | | 1 | | | | | | | | | | | | 11 | 21 | 12 | 24 | *1225 | 1354 | 1241 | 3 | N16 | W31 | 4(3c) | SL | 2 | 1235 | 35 | 5 | 6 | - | 1233 | 12 | - | 250 | | 13 | 24 | 1638 | 1653 | | 2 | S 27 | W80 | 2(2c) | S | 2+ | 1638 | 27 | 5 | 4 | *2
4 | 1637
1647 | 10
120 | 1638.8 | 1000
25 | | 14 | 24 | 15 | 28 | 16 | 29 | 17 | 31 | •0358 | 0550 | 0436 | 3+ | N24 | E05 | 1(1e) | G | 1 | 0356 | 84 | 1 | 1 | CD | 0359 | >120 | 0435 | 234 | | 18 | Feb.
03 | | | | | | | | | | | | | | ĺ | | | | | | 19 | 08 | 1550 | 1615 | 1555 | 2 | S 28 | E38 | 2(2c) | s | 2 | 1552 | 10 | 5 | 6 | * 2 | 1550 | 6 | 1551 | 865 | | 20 | 12 | 1542 | 1620 | | 1- | N19 | E80 | | ŀ | | | | | | 1 | 1556
1540 | 5
2 | 1540.5 | 6 | | 21 | 12 | 22 | 18 | 23 | 21 | 24 | 21 | *1605 | 2205 | 1930 | 3+ | N20 | w33 | 1(1c) | | | | | | | 3 | 1750 | 240 | 1915 | 19 | | 25 | 23 | 26 | 28 | *0005 | 0420 | 0014 | 3 | N18 | W 35 | 2 | G | 1+ | 0020 | 110 | 4 | 2 | CD | 0000 | >50 | 0045 | 224 | | Ì | 27 | Mar.
01 | | | | | | | | G | 1- | 0040 | 70 | 1 | 1 | CD | 0038 | > 9 | 0044 | 220 | | 28 | 01 | | | | | | | | | | | | | | | | | | , | | 29 | 10 | 30 | 15 | | | | | | | | | | | | | ! | | | | | | | 31 | 21 | | | | | | | | | | | | | | | | | | | This large, bright and active plage (3808) is responsible for 5 major events in this catalogue, none of which are accompanied by any known PCA events, or are followed by any major magnetic disturbances. 3. The plage and spot data for this event are the same as that given for event No. 2. No dynamic spectrum observations exist at the time of the large 10 cm. burst on Jan. 5th at 0050 UT. A major burst with a very long-enduring second part is reported at meter wavelengths. 4. No known SWF or 10 cm. events are reported at the time of the large flare on Jan. 6th at 1038 UT. The plage is extremely large, and very bright, and contains numerous other small spots in addition to the three spots which are listed in the spot data. The β p spot No. 12068 is a return of the β f spot No. 12016 in Region 3788. No dynamic spectrum observations exist at the time of the flare. No distinctive event is reported at meter wavelengths (200 Mc) and only modest bursts are reported at the very low frequencies. 5. This is a very great solar event, for which we have very incomplete information with respect to the optical flare. The strong Type II and Type IV bursts reported by Ft. Davis on Jan. 6th at 1703 UT. cover the entire observable range of frequencies from \$50 - 100 Mc. These events are superposed on a background of a moderate noise storm which is in progress throughout the day. At meter wavelengths the radio event consists of a major burst followed by a large rise in base level which continues for more than two and one-half hours. 6. This large 10 cm. burst on Jar perhaps be coupled with event N taken together seem to be relat sun. The strong Type IV radio er part" of the 200 Mc burst, and tu frequencies, related to event No the start of the 10 cm. burst. This major SWF on Jan. 7th at 17 great Type II burst which covers of 580 - 100 Mc observable by which was undoubtedly related t progress about one hour later, still in progress. At meter wav slists of a major (off-scale) bur base level. Note that the 10 cm ## F MAJOR SOLAR EVENTS FOR 1957 | McM | CMP | | PL. | | | | | | | | SUNSPO | | Α | | | |--------------|--------------|---------------|--------------|---------------|--------------|---------------|---------------------|----------|-------------------|----------------|--------------|------------|----------------|------|----------------| | Plage
No. | Gr. Day | Mean
Long. | Mean
Lat. | Aver.
Int. | Max.
Area | No.
Flares | Age in
Rotations | Ident. | MT.W.
Type | CMP
Gr. Day | Mean
Lat. | н | When
Seen | Area | MT.W. | | 3808 | Jan.
02.5 | 275° | N20 | 3.5 | E 000 | 00 | | | • IBYL | Jan. | | | | | | | 3808 | 02.0 | 275 | 1120 | 3.3 | 5,000 | 28 | 1 | NEW | * 2012 | 03.0 | N18 | 35 | 27-8 | | 12054 | | 3813 | 09.5 | 183° | S 22 | 3.5 | 19,000 | 27 | 3 | 3788 | lbo
Bl
lbpl | 08.1 | S15 | 15 | 1-9 | | 12066 | | 3808 | | | | | | | | | Top1 | 09.3
09.4 | S 16
S 23 | 15
13 | 6-15
2-14 | | 12075
12068 | | 3808 | | | | | | | | | | | | | | | | | 3808 | *3820 | 19.0 | 58° | S 28 | 3 | 9,000 | 36 | 2 | 3794 and | 0 0 | 10.0 | 0.00 | •• | | | | | | | | | | -, | • | • | 3797 | lapl | 18.8 | 527 | 29 | 14-25 | | 12085 | | | | | | | | | | | | | | | | | | | *3823 | 23.0 | 5° | N20 | 3.5 | 16,000 | 37 | 3 | 3801 | lapl
Lpl | 22.1
22.7 | N17
N11 | 34
(20) | 15-25
16-25 | | 12089
12093 | | *3820 | 3830 | 30 | 273° | N20 | 3 | 8,500 | 6 | 2 | 3808 | | | | | | | | | | •• | | | • | 0,300 | Ü | 2 | 3606 | dapl | 31.0
31.1 | N16
N16 | 10
10 | 31-5
31-5 | | 12114
12113 | | 3844 | Feb.
10.5 | 122° | S 26 | 3.5 | 7,000 | 9 | 1 | NEW | 000 | Feb. | 0.00 | | | | | | 3856 | 19.0 | 10° | N15 | 2.5 | 2,800 | 4 | 4 | Part of | lßpl
Ißpl | 10.9 | S 26 | 35 | 4-16 | | 12124 | | | | | | | 2,000 | 1 | • | 3823 | арас | 19.1 | N09 | 20 | 19-25 | | 12140 | | | | | | | | | | | | | | | | | | | 3856 | ŀ | | | | | | | | | 3863 | 25.0 | 291° | N18 | 3 | 3,500 | 4 | 3 | 3830 | dBpd | 25.3 | N14 | 27 | 22-27 | | 12154 | | | r | i | • | | | | | | | | | | | | 6th at 1758 | UT., should | | ery lon | g-endurin | g rise and | l fall in f | lux. | | 12. No dynamic | snectrum ch | onvetie | e ortet | ot the * | | | 2, are all in progress at UT, is accompanied by a
UT, is accompanied by a e entire frequency range t. Davis. A major flare, is event, was observed in while the large SWF was gits the radio event con-ollowed by a large rise in sts are superposed on a - This very severe storm is one of the rather rare storms for which the 3-hour Kp value reaches a value of 9. Only 37 such storms have been reported in the interval 1932-1961. No flare observations were being made at the time of the Type II burst on Jan. 24th at 2328 UT., therefore plage and spot data for this event are not available. No known SWF or - No. 12089 is a return of the spot No. 12040 in region 3801. - No dynamic spectrum observations, and no observations at meter wavelengths exist at the time of the major flare on Jan. 20th at 1100 UT. The αp spot No. 12085 is a return of the βf spot No. 12048 in region 3794. In addition to this spot, five other small spots of an ephemeral nature are also present in the plage. The plage and spot data for this event are the same as that given for event No. 9. The large 10 cm. event on Jan. 24th at 1637 UT. consists of a large burst followed by a long post-burst increase. No dynamic spectrum events, and no distinctive events at any of the other single radio frequencies, are reported at the time of the 10 cm. burst. | | | | FL. | ARE DA | TA | | | | SHO | ORT-W | AVE RA | DIO F | ADEOU1 | rs | | 10 | CM. EV | ENTS | | |-------|------------|---------------|------|--------|----------|--------|-------------|--------|------|-------|--------|-------|----------------|--------|--|----------------|--------------|--------------|--------------| | Event | Gr. | Beg. End | Max. | Im | р. | Positi | on | No. of | Type | Imp. | Beg. | Dur. | Wide
Spread | No. of | Type | Beg. | Dur. | Max. | Peak | | No. | Day | UT UT | | | | | | Obs. | | | UT | Min. | Index | Obs. | | UT | Min. | UT | Flux | | 32 | Mar.
25 | 33 | 26 | 33 | 20 | | | | | | | | | | | | | | | | | | | | 34 | 26 | 35 | | | | | | | | | | | | | | | ŀ | | | | | | 36 | 29 | | | | | | | | ŀ | | | | | | 1 | | | | | | 37 | 31 | 38 | Apr.
02 | 0255 | 0444 | | 2 | S16 | W46 | 3/1c | *G | 3 | 0250 | 120 | 4 | 6 | *CD | 0301 | 60 | 0336 | 800 | | 39 | 02 | 1959 | 2120 | | 1 | N25 | W90 | 1/10 | *SL | . 3 | 1915 | 10 | 5 5 | 10 | 2 2 | 1914
1955 | 38
23 | 1923
1959 | 247
176 | | | | | | | | | | | | | | | | | 4 | 2018 | 35 | 2000 | 14 | | 40 | 03 | *0825 | 1026 | 0835 | 3 | S14 | wen | 2 | G | 2 | 0833 | 35 | i 5 | 7 | CD | 0827 | 65 | _ | _ | | 10 | 03 | - 0020 | 1020 | 0000 | • | 5 | | - | ľ | ~ | 0000 | | | | " | | | | | | 41 | l | | | | | | | | | | | | | | 1 | | | | | | 42 | 03 | | | | | | | | l | | | | | | 1 | | | | | | 43 | 05 | | | | | | | | | | | | | | 1 | 1 | | | | | | 44 | 05 | 45 | 05 | 1433 | 1446 | | ì | S15 | W 90 | 1 | SL | . 2 | 1408 | 3 | 2 5 | 2 | 6 | 1407
1419 | 12
15 | 1411.5 | 50
6 | | 46 | 06 | | | | | | | | | | | | | | ł | | | | | | 47 | 08 | 0342 | 0359 | | 1+ | S 22 | E50 | 2(1c) | s | 1 | 0338 | 1 | 7 1 | 2 | CD | 0341 | 5.2 | 0342 | 440 | | | 20 | 48 | 09
09 | 0510 | 0522 | | 1- | N112 | W70 | | | | | | | | | | | | | | 49 | 09 | 0510 | 0522 | | 1- | NIJ | W70 | 1 | | | | | | | l | | | | | | 50 | 11 | 1722 | 1850 | 1738 | 2+ | S 23 | vos. | 2(2c) | *s | 3 | 1731 | 6- | 4 5 | 6 | 3 | 1725 | 75 | | 16 | | 30 | 11 | 1722 | 1830 | 1730 | 2, | 023 | EUJ | 2(2() | , , | 3 | 1131 | 0 | • 5 | Ü | 6 | 1729. | | 1733 | 135 | | 1 | | | | | | | | | l | | | | | | | | | | | | 1 | 51 | 12 | 1850 | 2010 | 1920 | 2 | S 25 | W73 | 3(3c) | *s | 3.+ | 1856 | 8 | 9 5 | 10 | *2 | 1855.
1918. | .5 23 | 1900.5 | 525
20 | | | | | | | | | | | | | | | | | - | 2,,10, | | | 20 | | 52 | 15 | 1410 | 1430 | | 2 | N25 | E90 | 1(1c) | *s | 3 | 1354 | 12 | 4 5 | 13 | 2 | 1351 | 19 | 1354 | 160 | | " | | | | | | | | | | - | | | | | - |] | | | | | | 53 | 15 | 54 | 16 | * <u>1040</u> | 1300 | 1105 | 3 | N30 | E85 | 10(3c) | *s | 3 | 1044 | . 7 | 6 5 | 10 | *GB | 1040 | 54 | 1046
1049 | 1650
1650 | | | | | | | | | | | | | | | | | 4 | 1134 | 110 | | 15 | | 55 | 17 | *1006 | 1118 | 1022 | 3 | N29 | E76 | 6(1c) | *s | 3 | 1004 | 1 7 | 9 2 | 6 | CD
SD | | 4 | | | | 56 | 17 | | | | | | | | | | | | | | | 1013 | 1 | - | | | 57 | 17 | 1851 | | | 1- | S 1 P | E73 | 1(1c) | s | 2 - | 1843 | , , | 7 4 | 8 | 3 | 1840 | 270 | | 90 | | " | | | | | | 310 | 113 | 4(40) | 1 | - | 1010 | . 4 | 7 | 0 | 2 | 1844
1850 | 5 | 1845
1851 | 5 | | 58 | 17 | *2000 | 2300 | 2116 | 3+ | NOO | E69 | 2(2c) | *01 | և 3- | + 193 | 7 1 | 63 4 | 8 | •GI | | | | 6000 | |] " | ' | 2000 | 2500 | 2.10 | . | 1120 | 709 | 2(2C) |] | _ 3 | | • | - ' | 0 | | , 2000 | | 2012 | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | 1 | ı | 1 | | | | | | | I | | | | | | 1 | | | | | 32. This SC on March 25th at 0129 UT, was preceded by an earlier phase change on the 24th at 2115 UT. 33. No known flare is reported at the time of the Type II burst on March 26th at 0412 UT., therefore plage and spot data for this event are not available. No SWF and no 10 cm, events are reported at the time of the Type II burst, and no observations were being made at meter wavelengths at that time. No events were reported at anyother single radio frequencies. Seven of the 12 stations which report this Sc storm start the storm later, on the 27th at 1136 UT. 35. This event appears in this catalogue only because it repre- sents the central meridian passage of a large, bright, and active plage which had more than 30 flares during its transit across the disk. However, the activity was not of the type necessary to produce any great solar optical and radio events such as those listed in this catalogue. 37. The 3-hour Kp values indicate that this is only a very minor magnetic disturbance. It was reported as a storm by only two stations, both of which are located in the antarctic polar region. 38. This major SWF on Apr. 2nd at 0250 UT, is accompanied by a large 10 cm, burst and is associated with flare activity in a very long-lived region in its 6th rotation, However, although plage 3907 is a return of plage 3872, its characteristics indicate that there has been a its last appearance. No dynamic available at the time of the SWF 9. This major SWF on April 2nd at flare activity in a region at the flare data is incomplete, but progress while the SWF is r spectrum, only a few small T by Ft. Davis, along with add between 1917 - 1925 UT. At n event consists of a major burs rise in base level. No events single radio frequencies at the topics. 2. VIII - 2L | ATA | | | | PO | LAR CAP A | BSORP | ION | | -1 | | GEOMA | GNETIC | STORM | 18 | | |--------------|----------------|------------|------------|-------------|--------------------|-------|--------------|------|------------|------------|------------|--------|-------|------------------|------------| | Max.
(UT) | Peak
Flux | Obs. | Gr.
Day | Onset
UT | Rise to
Peak | Dur. | Peak
Int. | Obs. | Gr.
Day | Beg.
UT | Dur. | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | | | | | | | | | | Jan.
02 | 0909 | 1.3d | Sc | m | 11 | 5 | | | (255) | NAG | | | | | | | | | | | | | | | | >70
>15 | UC
CAV | | | | | | | | | | | | | | | 1703-06 | >20
>1300 | CAV
NBS | | | | | | | 1 | | | | | | | | 706-09 | >6300 | NBS | | | | | | | į | | | | | | | | 1738
1736 | >1300
>5600 | NBS
NBS | | | | | | | | | | | | | | | | >280 | PRA | | | | | | | 08 | 01 | 3.5d | g | m | 8 | 5 | | | - 400 | CAV | Jan.
20 | 1500 | 16 ^h 86 | j 3: | 3 1 | 3 | | | | | | | | | | 235 | PRA | | | | | | | 21 | 1256 | 4 d | Sc | s | 19 | 9 | 980 | NBS | | | | | | | | | | | | | | | | 109 | NAG | 29 | 1313 | 2d | Sc | m | 12 | 6 | | | | | | | | | | | Feb.
03 | 15 | 3d | g | m | 10 | 6 | | 1552 | >1400
>100 | NBS
UC | | | | | | | | - | | • | | | v | | 1540
1547 | 240
510 | NBS
NBS | | | | | | | | | | | | | | | | | ŀ | | | | | | | 12 | 1850 | 2d | Sc | ms | 15 | 6 | | | | | | | | | | | 18 | 1834 | 1.5d | g | ms | 1 | 5 | | 1637 | 490 | NBS | | | | | | | 21 | 02 | 2.5d | g | m | 10 | 5 | | 2100 | 460 | NBS | | | | | | | | 1865 | 1.62 | 0- | | 10 | _ | | | > 100 | SYD | | | | | | | 23 | 1807 | 1,5d | Sc | ms | 15 | 7 | | 0004.5 | > 900 | NBS
NBS | j | | | | | | | Mar.
01 | 1610 | 3d | Sc? | ms? | 18 | 8 | | | | | | | | | | | 10 | 0023 | | Sc | ms | 16 | 7 | | | | İ | | | | | | | 15 | | 1.5d | g | m | 7 | 6 | | | | 1 | | | | | | | 21 | 12 | 2.5d | E | m | 4 | 5 | ^{4.} No known SWF is reported at the time of this major flare and Type II burst at 1609 and 2008 UT. Although it occurs late in the lifetime of the flare, it seems likely that the Type II burst is related to some form of activity during this major and long-enduring solar event. The Type II burst covers a frequency range of 155 - 100 Mc. Note the small but very long-enduring rise and fall in flux reported at 10 Cm., and the minor burst followed by a long-enduring noise storm at 169 Mc. In the dynamic spectrum there was also reported an inverted U burst at the start of the flare at 1606 UT. on March 1st at 0036 UT., therefore plage and spot data for this event are not available. No observations were being made at meter wavelengths at the time of the Type II burst, and no distinctive events were reported at any other single radio frequencies. ^{28.} This major storn is difficult to classify. Nine of the 18 stations start the storm gradually, the
other nine start the storm with a sudden commencement. Seven stations rate the storm as severe, and 11 as a moderately severe storm. ^{26.} This major flare on Feb. 28th at 0005 UT. occurs in a region which is a return of the plage described in note No. 17. The Type II burst which occurs after flare maximum was observed by Ft. Davis over the frequency range 140 - 100 Mg. #### 1957 (CONTINUED) | _[| | DYNAM | IC SPECTRUI | A DATA | | | | | 200 M | S DATA | | | +- | | | |-----------|---|--|----------------------|----------------------|------|----------------|---------|--------------|--------------|--------------|--------------|--------|----------------------------|----------|----------------| | ent
o. | Type I Time/Max. Int. | Type III
Time/Int. | Type II
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Туре | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc/s | Туре | T. | | 2 | | | | | | | | | | | | | | | | | 3 | | g0421/3
g0438/3 | *0412-
0416/3 | | 8 | | | | | | | | | | | | 5 | | | | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | | | | 8 | | | | | | | CA | 0250 | 40 | 0303 | 630 | тк | 9400 | CD | 0 | | 9 | C1955-
1958/3 | b1921/1
b1926/1 | | | н | | M
CD | 1903
1912 | 27
10 | | >159 | c
c | | | | | 1 | 1930/3 | g1932/1
b1935/1 | | | | } | CD | 1954 | 3 | | >159 | Ċ | | | | | • | | | | | | | CD | 0826 | 70 | | > 10 | N | 9400
1500
545 | CD
CD | 04
04
04 | | 1 | | | | | | | | | | | | | | | | | 2
3 | | | *0004- | | s | Ì | | | | | | | 167 | CD | 2: | | 4 | | | 0013/1 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | 9400
1500 | SD
CD | 1 | | 6 | | | | | | | | | | | | | | | - | | 17 | I 0352-
90440/2 | G0341-
0343/3 | *0347-
0353/1 | | S | | CD | 0341 | 1.5 | 0342 | 360 | TK | 9400
1000 | CD | 0 | | 18 | I_0312- | g0530/2 | *0532- | | s | | | | | | | | | | | | | >0634/2
g0544/3 | b0534/1 | 0544/2 | | | | | | | | | | | | | | 50 | I in progress
s all day | G1733-
1734/2
g1736-
1737/1
b1742/1
b1744/1 | | | Н | į | M
CD | 1727
1733 | 18
12 | 1738 | | c
c | 460
167 | M
CD | 1 | | 51 | C1858-
1902/2
I _s in progress
all day | G1858-
1902/2
b1913/1
g1914/1 | *1905-
1916/3 | | н | 200-
100 | CD | 1857.5 | 18 | | | С | 460
167 | CD | | | 52 | | g1402/1 | *1401-
1407/3 | | н | 200-
100 | CD | 1358 | 12 | | 1500 | N,C | 9400
1500
536
167 | CD | | | 53
54 | | | | | | | CD | 1047 | 16 | | 800 | N | 9400 | CD | | | | | | | | | | | | | | | | 600
545 | CD | | | 55 | | | | | | | | | | | | | 9400 | CD | | | 56
57 | C1845/2 | G1842- | *1846- | | н | 230- | CD | 1842 | 9 | | >75 | С | 460 | SID | | | " | C1040/ 2 | 1845/3
g1855/1 | 1852/3 | | n | 100 | | -014 | • | | 713 | · | 1 | ىد | | | 58 | G2011 | | *2032-
2039/3 | * 2011-
2055/2 | н | 180-
100 | CD | 2018
2026 | 97
4 | 2047
2028 | >159
>75 | c
c | 460 | CD | | | | C2011-
2055/1
I_2036-
S2228/2 | b2020/1
b2022/1
G2027-
2034/3 | | | | | | | | | | | | | | or event No. 41. It is difficult to find any outstanding or centritie solar event as the source of the PCA. Event No. 45 is offered only as a suggestion - and a rather poor one, at that, It is a limb flare in the same region that caused the earlier PCA event on April 3rd (event No. 41). - 49. Only incomplete flare data is available at the time of the Type II burst on Aprel 9th at 0532 UT, Minor flare activity occurred in a 1001m near the west limb. No known SWF or 10 cm. ev. 35, are reported at the time of the Type II distinctive events are reported at any other single radio frequencies. 50. The plage and spot data for this event are the same as that given for event No. 47. Note that the modest 10 cm. burst is superposed on a long rise and fall in flux, and at meter wavelengths and radio event follows a similar pattern. 48. Six of the 13 stations start this gradual storm later, on April 9th at 22xx UT. 49. Only incomplete flar data is available at the time of the Type II burst on April 9th at 0532 UT. Minor flare activity occurred in a 100100 agar the west limb. No known SWF or 10 cm, ev. 31 are reported at the time of the Type II burst at 1905 UT. was observed by Ft. Davis over the frequency range 200 - 100 Mc. At meter wavelengths, the radio event consists of a major burst, and a similar type of event is reported at even lower or 10 cm. - This major SWF and Type II burst on April 18th and 1401 UT, are associated with flare activit at the east limb. The large, bright and active pi a β_Y spot No. 12285, which is possibly a return No. 12225 in plage 3908 (event No. 39). The was observed by Ft. Davis over the frequency 100 Mc. At meter wavelengths, the radio ever a very great burst (without a second part), at reported at other single radio frequencies in similar type of burst occurred throughout the of radio observations. - This is a very great solar event. The plage and the same as that given for event No. 52. The g April 16th at 1040 UT, was an elevated limb f followed by an extensive system of bright loo 2. **Y** | | P | AGE DA | TA | | + | | <u> </u> | | SUNSPOT | DAT | A | | | |-----------------------------------|--|--|--|---
--	---	---
---|--|--| | Mean
Long. | Mean
Lat. | Ave.
Int. | Max.
Area | No.
Flares | Age in
Rotations | Ident. | MT.W.
Type | СМР | Mean | | | Area | MT.W.
No. | | | | | | | | | | | | | | | | | 120° | S 25 | 3 | 2,500 | 12 | 1 1 | NEW | dppl | May
3.8 | S 26 | 18 | 2-9 | | 12315 | | 21° | S 28 | 3.5 | 10,000 | 42 | 2 | 4939 | *lbyl | 10,9 | S 27 | 23 | 3-17 | 1300 | 12318 | | 262° | S 20 | 3 | 11,000 | 24 | 3 | 3944 | JBP L | 19.0 | S 18 | (15) | 20-24 | | 12348
12337 | | 28° | N13 | 3.5 | 10,000 | 41 | 2 | 3932 | * lbyl | 11.5 | N12 | 30 | | >1000 | 12324 | | 176° | S 10 | 3 | 6,500 | 16 | 2,5 | 3956 and
3957 | lapl | 26.3 | S11 | 15 | 20-31 | | 12350 | | 196° | N18 | 3 | 6,000 | 35 | 2 | 3966 | dβpd
dβL | 24.7
25.0 | N15
N23 | 18
13 | 19-29
24-31 | | 12347
12356 | | 136° | S 24 | 2.5 | 4,000 | 8 | 1 | NEW | *1 ₇ L | 29,8 | S 24 | 15 | 24-4 | | 12357 | | 97° | S 22 | 3 | 5,500 | 36 | 1 | NEW | Lapl
* dBYL | June
01.7
02.3 | S 25
S 17 | 23 | 26-8
30-8 | | 12360
12368 | | 50°
285° | S 18
N30 | 3.5 | 5,200 | 29 | 4 | 3967
NEW | LBpL
dBpL | 04.4
04.5 | S17
S25 | 30
8 | 29-10
4-10 | | 12365
12377 | | | | | , | -, | • | | ~~1~ | 21,7 | 1100 | 23 | 1-20 | | 12387 | | 179° | N18 | 3.5 | 9,000 | 64 | 2 ' | 3989 and
3991 | lapl
•18yl | 21,8
22.5 | N18
N18 | 26
39 | 15-27
15-29 | 1100 | 12415
12417 | | 199° | S 35 | 3.5 | 7,000 | 53 | 2 | 3986 | 181 | 20,9 | S 38 | 27 | 14-28 | 1200 | 12409 | | with
very
be-
The
the | No de any Type B. No letime plage obsee At tt large burs D. This | rved by I istinctive of the oth is II burst mown fla of the T e and spo rved by i e single e burst a t. PCA e | rt. Davis over events are ther single in the | er the free reporter radio free radio free radio free radio free radio may not available ver a free rencies, savelength | equency rand at meter valuencies, and events are events are events. The Taylor randthe only events at the tine at 0206. | ge 200 - 100 wavelengths o at the time of e reported at 8 UT., therei type II burst ge 250 - 170 ent reported me of the Typ | Mc. activity, the rat Type II buthe flare or SW 70. The Type with small ore east limb. was the frequer Mc. the radio e is a con a rise at at any of the ratio with the ratio e is a con a rise at a tany of the ratio with the ratio e is a con a rise at a tany of the ratio with the ratio e is a con a rise at a tany of the ratio with | at can be it. rst describe VF. II burst on flare activ The Type II rcy range I event consis nd fall in flu te other sing | May 21s Ity in a burst was 65 - 100 ts of a vex. No dist le radio i | t at 1
large,
sobser
Mc.
ery mitinctiv
freque | 915 UT. is
bright played by Ft.
At meter mor burst
e events a
noties. | event is the
t any known
associated
ge near the
Davis over
wavelengths
superposed
re reported | | | | 120° 21° 262° 28° 176° 196° 136° 179° 199° | Mean Mean Long. Lat. 120° \$25 21° \$28 262° \$20 28° \$13 176° \$10 196° \$18 285° \$35 \$pot of the goal o | Mean Mean Ave. | 120° S25 3 2,500 | Mean Mean Ave. Max. No. Long. Lat. Int. Area Flares 120° S25 3 2,500 12 21° S28 3.5 10,000 42 262° S20 3 11,000 24 28° N13 3.5 10,000 41 176° S10 3 6,500 16 196° N18 3 6,000 35 136° S24 2.5 4,000 8 97° S22 3 5,500 36 50° S18 3 5,200 29 285° N30 3.5 11,000 17 179° N16 3.5 9,000 64 199° S35 3.5 7,000 53 spot of the x spot No. 12281 in region 3 observed by Ft. Davis over the fre No distinctive events are reported any of the other single radio fre any of the other single radio fre any of the other single radio fre Type II burst. sat 68. No komm flare, SWF, or 10 cm. with sum. Sat 68. No komm flare, SWF, or 10 cm. with sum of the other single radio fre Type II burst on May plage and spot data are not avail with every bereath of the single radio frequencies, large burst at meter wavelength burst. The the single radio may plage and spot data are not avail the single radio frequencies, large burst at meter wavelength burst. The the single radio may 19th for the single radio frequencies, large burst at meter wavelength burst. The single radio frequencies, large burst at meter wavelength burst. The single radio frequencies, large burst at meter wavelength burst. The single radio frequencies, large burst at meter wavelength burst. The single radio frequencies, large burst at meter wavelength burst. The single radio frequencies of fr | Mean Mean Ave. Max. No. Age in | Mean Mean Ave. Max. No. Age in Ident. | Mean Long. Ave. Lat. Max. Area No. Age in Flares Rotations Ident. MT.W. Type 120° S25 3 2,500 12 1 NEW JPpl. 21° S28 3.5 10,000 42 2 4939 • £βγL Jppl. 28° N13 3.5 10,000 41 2 3952 • £βγL Jppl. 28° N13 3.5 10,000 41 2 3953 • £βγL 196° N18 3 6,000 35 2 3966 Jβρd. 136° S24 2.5 4,000 8 1 NEW • £βγL 97° S22 3 5,500 36 1 NEW • £βγL 179° N18 3 5,200 29 4 3967 Jβρd. 2885° N30 3.5 11,000 17 1 NEW • LβγL 1199° S35 3.5 7,000 <td>Mean Long. Mean Long. Ave. Max. Plares No. Age in Flares Ident. MT.W. Type CMP Gr. D. 120° S25 3 2,500 12 1 NEW Jpp£ May 21° S28 3.5 10,000 42 2 4839 - Jβγ£ 10.2 26° S20 3 11,000 24 3 3944 Jpp£ 11.5 176° S10 3 6,500 16 2.5 3985 and 3857 Jpp£ 11.5 176° N18 3 6,000 35 2 3986 Jpp£ 24.7 196° N18 3 6,000 35 2 3986 Jpp£ 24.7 40° S24 2.5 4,000 8 1 NEW Jpp£ 24.7 40° S22 3 5,500 36 1 NEW Jpp£ 2.3 50° S18 3 5,200 29 4</td> <td>Mean Mean Ave, Long. Max. Long. No. Age in Long. Meent. MT.W. Type CMD Mean Area 120° 325 3 2,500 12 1 NEW Jppl. 18.8 S26 21° 328 3.5 10,000 42 2 4699 - £8γ.L 10.9 527 228° 320 3 11,000 24 2 3932 - £8γ.L 10.9 524 28° N13 3.5 10,000 41 2 3932 - £8γ.L 11.5 N12 170° 810 3 6,500 16 2.3 3956 and £-p.L 26.3 511 190° N18 3 6,000 35 2 3866 Jβp.J 24.7 N15 136° 324 2.5 4,000 8 1 NEW - J.γ.L 2.0.8 524 97° 522 3 5,500 36 1 NEW</td> <td>Mean Long Mean Long Ave. Max. Long No. Age in Long Beest. MT.W. Type CMD Mean Long MEAN Long Lab. MT.W. Type CMD Mean Long App L Long MEAN Long MEAN Long MEAN Long App L Long MEAN Long MEAN Long MEAN Long MEAN Long MEAN Long MEAN Long App L Long MEAN Long MEAN Long MEAN Long M</td> <td> Moss Moss Moss Moss Moss Moss Moss Places Rotations Edect. MT.W. CMP Moss H Wien </td> <td>Man Man Ave. Max. To. Age in Month Cong. Let No. No.</td> | Mean Long. Mean Long. Ave. Max. Plares No. Age in Flares Ident. MT.W. Type CMP Gr. D. 120° S25 3 2,500 12 1 NEW Jpp£ May 21° S28 3.5 10,000 42 2 4839 - Jβγ£ 10.2 26° S20 3 11,000 24 3 3944 Jpp£ 11.5 176° S10 3 6,500 16 2.5 3985
and 3857 Jpp£ 11.5 176° N18 3 6,000 35 2 3986 Jpp£ 24.7 196° N18 3 6,000 35 2 3986 Jpp£ 24.7 40° S24 2.5 4,000 8 1 NEW Jpp£ 24.7 40° S22 3 5,500 36 1 NEW Jpp£ 2.3 50° S18 3 5,200 29 4 | Mean Mean Ave, Long. Max. Long. No. Age in Long. Meent. MT.W. Type CMD Mean Area 120° 325 3 2,500 12 1 NEW Jppl. 18.8 S26 21° 328 3.5 10,000 42 2 4699 - £8γ.L 10.9 527 228° 320 3 11,000 24 2 3932 - £8γ.L 10.9 524 28° N13 3.5 10,000 41 2 3932 - £8γ.L 11.5 N12 170° 810 3 6,500 16 2.3 3956 and £-p.L 26.3 511 190° N18 3 6,000 35 2 3866 Jβp.J 24.7 N15 136° 324 2.5 4,000 8 1 NEW - J.γ.L 2.0.8 524 97° 522 3 5,500 36 1 NEW | Mean Long Mean Long Ave. Max. Long No. Age in Long Beest. MT.W. Type CMD Mean Long MEAN Long Lab. MT.W. Type CMD Mean Long App L Long MEAN Long MEAN Long MEAN Long App L Long MEAN Long MEAN Long MEAN Long MEAN Long MEAN Long MEAN Long App L Long MEAN Long MEAN Long MEAN Long M | Moss Moss Moss Moss Moss Moss Moss Places Rotations Edect. MT.W. CMP Moss H Wien | Man Man Ave. Max. To. Age in Month Cong. Let No. | 2. 1111 - 3 6 | Event
No. | Gr.
Day | Beg.
UT | End | Max. | Imp. | Posit | ion | No. of | Туре | Imp. | Beg. | Dur | Wide | No. of | Type | Beg. | Dur. | Max. | Peak | McM. | |--------------|------------|-------------|------|------|------|-------|-----|---------------|------------|------|------|------|-----------------|--------|-----------------------|------------------------------|---------------------|--------|------------------------|----------| | 59 | | | UT | UT | | | | Obs. | | | UT | Min. | Spread
Index | Obs. | | UT | Min. | UT | Flux | Plage No | | | Apr.
18 | 1310 | 1353 | 1323 | 2 | S16 | E64 | 4 (1c) | s | 2+ | 1304 | 36 | 5 | 12 | 2
4 | 1304.5
1311.5 | 7
13 | 1306.8 | 385
16 | 3944 | | 60 | 21 | | | | · | | | | | | | | | | | | | | | | | 61 | 24 | | | | | | | | i | | | | | | | | | | | } | | 62 | 26 | | | | | | | | | | | | | | • | | | | | 1 | | 63 | May
08 | | | | | | | | | | | | | | 1 | | | | | 1 | | 64 | 09 | 2325 | 2338 | | 1- | S 22 | W90 | 1(1c) | s | 1 | 2327 | 10 | 5 | 3 | 2 | 2327 | 3 | 2328 | 22 | 3969 | | | 11 | _ | | | | | | | 1 | | | | | | | | | | | *3972 | | 65
66 | 14 | 0222 | 0230 | 0225 | 1 | S 20 | E87 | 1(1c) | *s | 3 | 0222 | 62 | 5 | 3 | CD | 0223 | 4 | 0224 | 273 | 3980 | 1000 - | 410 | *3974 | | 67 | 14 | 1840 | 1850 | | 1 | N09 | W50 | 1(1c) | S | 1+ | 1838 | 25 | 5 | 7 | 2
4 | 1837.5
1847.5 | 10
30 | 1838.5 | 410
16 | -3914 | | 68 | 19 | | | | | | | | ļ | | | | | | | | | | | | | 69 | 19 | | | | | | | | l | | | | | | | | | | | ľ | | 70 | 21 | 1900 | 1935 | 1908 | 1 | S12 | E63 | 1(1c) | SL | 2 | 1858 | 54 | 5 | 6 | | | | | | 3990 | | 71 | 25 | | | | | | | | | | | | | | | | | | | *3987 | | 72 | 26 | | | | | | | | | | | | | | | | | | | ŀ | | 73 | 30 | 74 | June
01 | 2329 | 2356 | 2344 | 2- | S 25 | W44 | 1(1c) | *SL | 3 | 2335 | 77 | 5 | 3 | 3
6 | 2330
2338.5 | 30
6 | 2341.5 | 10
98 | 3993 | | 75 | 0ა | 1 | 76 | 04 | 0029 | 0155 | 0054 | 2 | S17 | W22 | 2(1e) | *SL | 3 | 0030 | 72 | 5 | 3 | CD | 0040 | 38 | 0045 | 280 | *3996 | | 77 | 04 | <u>0859</u> | 0950 | 0902 | 2 | S17 | w27 | 4(2c) | S | 3- | 0900 | 30 | 5 | 7 | SD
•SD
SD
SD | 0859
0917
0928
0934 | 10
11
4
30 | | 350
610
66
52 | 3996 | | 78 | 05 | 1326 | 1433 | 1330 | 2 | S 18 | W44 | 8(4c) | s | 3- | 1328 | 26 | 5 | 12 | *2 | 1326.5
1334.5 | | 1328 | 725
9 | 3996 | | 79 | 06 | 1130 | 1148 | 1133 | 1 | S14 | W27 | 5(1c) | | | | | | | *6
4 | 1129
1130.5 | 1.5
4 | 1129,8 | 525
8 | 3997 | | 80 | 14 | | | | | | | | | | | | | | | | | | | 4011 | | 81 | 17 | | | | | | | | | | | | | | | | | | | ĺ | | 82 | 19 | 1609 | 1649 | 1613 | 2 | N20 | E45 | 4(2c) | • s | 3 | 1608 | 44 | 5 | 14 | 3
•6
4 | 1445
1608,8
1618,8 | | 1610.2 | 15
2 2325
24 | *4024 | | 83
84 | 20
21 | | | | | | | | | | | | | | | | | | | *4021 | 59. The plage and spot data for this event are the same as that given for event No. 57. The Type II burst on April 18th at 1304 UT, was observed by Ft. Davis over the frequency range 220 - 100 Mc. 60. This brief and minor magnetic disturbance was reported as a storm by only three stations - all of which were located in the north and south polar and auroral zones. 61. This storm was reported as a storm by only one station -APIA. However, the 3-hour Kp values indicate a real period of storminess during this interval. The weak interval of storminess - covering events No. 60, 61, and 62 - between April 24-27, follows the more disturbed period between March 27-30 by an interval of approximately one solar rotation, or 27 days. 64. The Type II burst on May 9th at 2329 UT, is associated with minor flare activity in a region near the west limb of the sun. The region is a new plage that formed on the disk in the east on May 1. The Type II burst was observed by Ft. Davis over a frequency range of 300 - 100 Mc, No observations exist at meter wavelengths at the time of the burst, and only minor bursts are reported at the higher single radio frequencies. This is an interesting example of a very large and very bright plage, with a spot of very large area, which produces numerous flares but no great solar or terrestrial effects in the form of large flares, large radio bursts, large SWF's, PCA, or magnetic storms. Th No. 12318 is one of the largest spots of the to 1300 millionths of the hemisphere 66. The large SWF on May 14th at 0222 UT. small flare activity in a region at the ea No dynamic spectrum observations, and meter wavelengths, exist at the time of the 67. The Type II burst on May 14th at 1841 UT, small flare activity in a very large, veractive plage (3974). This region is very haviour to plage 3972 described in note complex Gy-spot No. 12324 region 3974 largest spots of the year - area equal of the hemisphere (Mt. Wislon data) and proceedings. | ER RADI | O DATA | | | | | POI | LAR CAP | ABSOR | PTION | | | | | GEO | MAGNET | IC STOP | t M S | | |-----------------|--------------|---|--------------------------|---------------|--------|-------------|-----------------|-------|--------------|-----------------------------|--------------|------------|------------|--------|--------|---------|------------------|------------| | Dur.
Min. | Max.
UT | . Peak
Flux | Obs. | Gr
Da | | Onset
UT | Rise to
Peak | Dur. | Peak
Int. | Obs. | | Gr.
Day | Beg.
UT | Dur. | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | | | | | | | • | | | | | | Mar.
25 | 0129 | 1d | Sc | m | 8 | 6 | | | | | | į
į | | | | | | | | 26 | 1050 | 2.3d | Sc | ms | 12 | 7 | | | | | | | | | | | | | | 29 | 0337 | 1,2d | Sc | ms | 15 | 8 | | | | | | | | | | | | | | 31 | | 1.5d | g | m | 2 | 4 | | 48 | | (240) | NG | | | | | | | | | | | | | | | | | 257
38
60 | | (632)
(383)
1600 | HHI
HHI
N | | Apr. | 1220 | 14h | 65 | _ | | | | | | | | | | | 14 | 2359 | 350 | NBS | | ~ | 1330 | 1411 | 03 | 31 | В | | Apr.
03 | 16 | 0,5d | g | m | 2 | 5 | | | | | | | | | | | | | | 05 | 10 | 1.2d | g | ms | 6 | 6 | | 12
10 | | (298)
(126) | нні
нні | . 0 | 16 | 0800 | 12h | 66 | 26 | | | | | | | | | | | 1.4
1.6 | | (343)
326 | NAG
NAG | | | | : | | | | | 09 | 05 | 2.5d | R` | ms | 13 | 7 | | 11
13 | 1728
1733 | 150
270 | NBS
NBS | | | | | | | | | | | | | | | | | 25
15 | 1900 | 160
1600 | NBS
NBS | | | | | | | | | | | | | | | | | 18
14
6 | 1402 | (162)
70
>>1500 | HHI
HHI
PRA
NBS | | | | | | | | | | | | | | | | | 28
20
17 | | (1262)
>400
1100 | | | | | | | | | | 15 | 2048 | 0.5d | Sc | ms | 5 | 6 | | 75 | | (348) | нні | | | | | | | | | | | | | | | | | 0.9 | | 260 | NBS | | | | | | | | | 17 | 1136 | 3d | Se | ms | 14 | 8 | | | | | .120 |]
 | | | | | | | | | | | | | | | | 42 | 2041 | 608 | NBS | | | | | | | | | | | | | | | | | 354 UT. | 10 | Γ. The 10 cm.
ng post-burst
ere being mad | increase. I | No dynamic si | nectri | ım ohee | rustions | h | ursts sup | te sun. The 1 serposed on a | very long-en | luring r | ise and t | all in | | | | | a region contains e βspot II burst te 200 - sists of events e that a e range UT. The 10 cm. event consists of a great burst followed by a long post-burst increase. No dynamic spectrum observations were being made at the time of the large flare. At meter wavelengths, the radio event consists of a very large burst (without a second part). 55. This major flare and SWF on April 17th at 1006 UT, occurred in the same region that was responsible for events No, 52 and 54. No dynamic spectrum observations, and no observations at meter wavelengths, were being made at the time of the flare. ata are 57. The Type II burst on April 17th at 1846 UT, was observed by Ft. Davis over the frequency range 230 - 100 Mc. The flare data is incomplete, but there seems to be no question about the association with a minor flare in a region near the east limb of the sun. The 10 cm. event consists of two minor bursts superposed on a very long-enduring rise and fall in flux. At meter wavelengths, the radio event consists of a major burst, without any second part. 58. This is a very great solar event on April 17th at 2000 UT. The plage and spot data are the same as that given for event No. 52. The same active plage (3941) has been responsible for events No. 52, 54, 55, 56, and 58. The Type II Durst at 2032 UT, was observed by Pt. Davis over the frequency range 180 - 100 Mc, and the Type IV emission covered the entire observable spectral range of 580 - 100 Mc. The IO cm. event consists of a very great burst of long duration, and at meter wavelengths the radio event consists of a large burst superposed on a great rise and fall in flux. #### 1957 (CONTINUED) | went | Type I | Type III | Type II | Type IV | Obs | Freq. | Туре | Beg. | 200 MC | |
Peak | Obs. | Freq. | Туре | | |-------------|------------------------------------|--|-------------------|-----------|------|-------------|----------|--------------|-----------|--------------|-------------|----------|-------------------------|---------|--| | vent
No. | Time/ Max.
Int. | Time/Int. | Time/Int. | Time/Int. | Obs. | Range | | UT | Min. | Max.
UT | Flux | | Mc/s | | | | 59 | I in progress
all day
C1302- | G1304- | *1304-
1312/3 | | н | 220-
100 | ср | 1305 | 6 | | 800 | N | 9400
1500
600 | CD
E | | | | 1304/1 | 1306/3
 | | | | | | | | | | | 536 | CD | | | | | b1318/1
g1322/2 | | | | | | | | | | | | | | | 60
61 | | | | | | | | | | | | | | | | | 62 | | | | | | | | | | | | | | | | | .63 | | | | | | | | | | | | | ļ | | | | 64 | I in progress | G2320-
2322/3 | *2329-
2334/3 | | н | 300-
100 | | | | | | | 9400
1000 | SED | | | 65 | | -542, 5 | 200.75 | | | | | | | | | | | | | | 66 | | | | | | | | | | | | | 9400 | SID | | | 67 | I in progress | g1838-
1839/1 | *1841-
1843/3 | | н | 200-
100 | | | | | | | | | | | 68 | • | • | *0008-
0016/2 | | н | 250-
170 | CD
CD | 0007
0016 | 5.5
5 | 0010
0017 | 1400
900 | TK
TK | | | | | 69 | | | | | | 1 | | | | | | | } | | | | 70 | | | *1915-
1918/3 | | н | 165-
100 | CD | 1857
1924 | 40
0,5 | 1918 | | c
c | | | | | 71 | | | | | | | | | | | | | | | | | 72 | | | | | | | | | | | | | | | | | 73 | | | | | | | | | | | | | | | | | 74 | | | | | | | CD | 2339 | 7 | | 320 | TK | 9500
2000 | CD | | | 75 | | | | | | | | | | | | | | | | | 76 | 10045-
0052/1 | III _s in pro-
gress
<0000-
>0612/1 | | | н,з | | | | | | | | 9500 | CD | | | 77 | | | | | | | CD | 0907 | 70 | | >800 | N | 600 | ECD | | | | | | | | | | | | | | | | 536
169 | ECA | | | | | | | | | | | | | | | | 81 | CD | | | 78 | I in progress
all day | g1319/2 | *1329-
1333/3+ | | н | 540-
100 | CD | 1330 | 4 | | >250 | N,C | 600
536
460
61 | CD | | | 79 | | | | | | | СТО | 1128 | 2.5 | | >200 | N | 600
545 | CD | | | | | | | | | | | | | | | | 166 | | | | 80
81 | | | | | | | | | | | | | | | | | 82 | I 1622- | G1609- | *1615- | | н | 210- | СБ | 1615 | 3 | 1616 | >260 | c | 545 | | | | | 5 2400/3 | 1613/3 | 1620/3 | | | 100 | М | 1623 | 90 | 1641 | | С | 460 | CA | | | 83
84 | | | | | | | | | | | | | | | | | "] | | | | | | | | | | | | | | | | 75. Four of the nine stations that report this storm indicate that there is a second start, on 6th at 00xx UT, which is designated as a sudden commencement. 76. This major SWF on June 4th at 0030 UT, is associated with a flare which evidently produces only a brief noise storm in the dynamic spectrum. However, an unclassified burst is also reported at 0040 UT, which has its counterpart at the high frequencies also. No observations at meter wavelengths are available at the time of the SWF. 77. The plage and spot data for this event are similar to that 79. No known SWF is reported at the time of the large 10 cm. 82. The 10 cm. event on June 19th at 1609 o917 UT. At meter wavelengths the radio event consists of a large major + burst of long duration, and the same kind of major + burst is indicated in the reports of the other single frequencies in the low and intermediate frequency range. The plage and spot data for this event are similar to that given for event No. 76. The 10 cm, event on June 5th at 1326 UT. consists of a large burst followed by a long but modest post-burst increase. The Type II burst was observed by Ft. Davis over the frequency range 540 - 100 Mc. seems to be characterized by a burst of that sweeps almost instantaneously through range covered by the single frequencies. 80. This event appears in this ca-alogue only the sents the central meridian passage of a lathat contains a complex βγ spot. Hower associated with this spot did not produce optical and radio events such as those listed. 81. This gradual storm has a second start on | ## PLAGE DATA ## Max Max No. Age in Day Lat. Int. Area Flares Rotations ## Max No. Age in Type Gr. Day Lat. Seen Area MT.W. Type Gr. Day Lat. Seen No. ## Max No. Age in Type Gr. Day Lat. Seen No. ## When Area MT.W. Type Gr. Day Lat. Seen No. ## When Area MT.W. Type Gr. Day Lat. Seen No. ## Max No. Age in Type Gr. Day Lat. Seen No. ## Max No. Age in Type Gr. Day Lat. Seen No. ## MT.W. Type Gr. Day Lat. Seen No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## No. ## No. ## MT.W. Type Gr. Day Lat. Seen No. ## N | | |--|----| | 15.5 1.5 5.20 5.5 9,000 28 2 3993 | /. | | 13.5 1.5 5.20 3.5 9,000 28 2 3993 | July July | | | Mily | 7 | | 15.0 13° S27 3.5 9,000 26 1 NEW *LyL 05.4 S30 35 28-11 12445 | ÷ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 7 | | 14.5 247° S32 3.5 1.800 14 1 NEW * 47L 14.6 S33 25 10-20 12473 | ı | n No. 88a 90. No known flare is reported in association with the large 10 cm. burst on July 2nd at 0015 UT, therefore plage and accompanied the flare. Throughout the entire range, from | | | ix. In the spot data for this event are not available. hd Type I ath WWV 92. This is a very great solar event on hily 3rd at 0712 UT. | | | The plage and spot data are similar to that given for event No. 88b. Note that the great flare has a "double" aspect, Sc storm indicated by the spreading of the flare to a different start on location in the plage. This "doubling" is also character- | | | istic of the SWF and of the 10 cm, burst. No dynamic spectrum observations exist at the time of the flare. How- | | | | | | | FLARE | DATA | | | | SHOR | T-WAVE | RADIO | | UTS | | 10 | CM. EV | ENTS | | | _ | |--------------|------------|------------|-----------|------------|------|--------|------------|-----|------|---------------|--------------|-------------------------|----------------|---------|------------------|--------------|------------|--------------|-------------------|----| | Event
No. | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Imp. | Positi | ion No. o | тур | e Im | p. Beg.
UT | Dur.
Min. | Wide
Spread
Index | No. of
Ob.s | Туре | Beg.
UT | Dur,
Min. | Max.
UT | Peak
Flux | McM.
Plage No. | Gi | | 85 | June
22 | 0236 | 0257 | 0241 | 2 | N23 I | E12 1(1c) | s | 2 | 0229 | 74 | 5 | 4 | *CD | 0231 | 21 | 0238 | 570 | 4024 | | | 86 | 22 | ļ | | | | | | | | | | | | | | | | | 1 | | | 87 | 25 | 87a | 25 | ŀ | | | | | | | | | | | | | | | | | 4030 | | | 88a | 27
28 | a2322 | 2418 | 2335 | 1 | N20 ' | | st | . 1 | 2325 | 55 | - | (MOM) | *CD | 8000 | 250 | 0141 | 504 | 4024 | | | 88b | | b2330 | 2427 | 2335 | 1 | N14 | E32 2(2c) | | | | | | | | | | | | *4039 | | | 89 | 30 | July
02 | | | | | | | sı | L 2 | 0013 | 47 | 5 | 3 | *CD | 0015 | 23 | 0016. | 5 >630 | | | | 91 | 02 | 92 | 03 | *0712 | 0830 | 0745 | 3+ | N14 V | | s | 2 | | >60 | | | *6 | 0726.5 | 31 | | 585 | *4039 | | | | | *0830 | 1145 | 0840 | 3+ | N10 V | W42 18(5c) | *S | 3 | 0830 | 44 | 5 | 9 | 6
*6 | 0805,5
0832 | | | >600 | 93 | 03 | 94 | 04 | | | | | | | | | | | | | | | | | | *4046 | | | 95 | 05 | 96 | 05 | | | | | | | | | | | | | | | | | | 4044 | | | 97 | 16 | 0731 | 0816 | 0744 | 1+ | N31 E | 580 9(4c) | SI | . 3 | 0721 | 59 | 5 | 8 | CD | 0730 | 21 | 0734 | | *4065 | | | 98 | 16 | 1742 | 2008 | 1804 | 1+ | S33 V | V28 5(5c) | SI | . 3 | 1740 | 105 | 5 | 8 |
6
4 | 1739
1811 | 32
229 | 1757 | 350
30 | 4061 | | | 99 | 17 | 0112 | 0148 | 0116 | 1+ | N11 E | 2(2c) | s | 2- | - 0127 | - | - | (1) | CD | 0114.5 | 3,5 | 0115 | 269 | *4065 | | | 100 | 19 | | | | | | | İ | | | | | | | | | | | | | | 101 | 20 | 2358 | 0100 | 0026 | 1 | N29 F | E18 2(2c) | *SI | . 3 | 0007 | 60 | 5 | 7 | 6 | 0013 | 8.8 | 0013.5 | 465 | *4065 | | | 102 | 21 | 0633 | 0756 | 0700 | 2 | N30 F | E15 10(3c) | *5 | 3 | 0647 | 60 | 5 | 8 | *2 | 0659.5 | 4 | | 536 | *4065 | | | | | | | | | | | | | | | | | | | - | | | | | | 103 | 21 | 1320 | 1442 | 1337 | 2 | N29 E | E12 8(4c) | s | 2- | 1335 | 45 | 5 | 10 | 9
*2 | 1329.5
1334.5 | 5
6 | 1335,9 | 35
850 | *4065 | | | | he plage a | The plage and spot data for this event are similar to that given for event No. 82. The large 10 cm, burst on June 22nd at 0231 UT, appears to have related radio events only at the higher frequencies. No distinctive events are reported at meter wavelengths at the time of the 10 cm, burst, and in the dynamic spectrum there is only a noise storm, with continuum, in progress throughout the day. ^{86.} The onset of this PCA event on June 22nd at 0500 UT. is superposed on the earlier weak event described in event No. 83. ^{87.} This Sc storm had a small initial impulse preceding the This Sc storm had a small initial impulse preceding the main impulse. This active region is similar to the plage described in note No. 65. The \$\beta\$ ps spot No. 12426 is the second largest spot of the year - area equal to 1800 millionths of the hemisphere (Mt. Wislon data), ^{88.} The flare event associated with the large 10 cm. burst on June 28th at 0008 UT. is ambiguous. Two flares occurred simultaneously between 27th, 2322 UT. and 28th, 0027 UT., in two different regions on the sun. Information concerning both of these flares is given. The flare described occurred in the region described in event No. 82. To burst resembles a long-enduring rise and fall in flynamic spectrum, the event consists of Type III. noise storms. The SWF is taken from the McMarcacata. Four of the 16 stations that report this severe indicate that the storm has a second gradual July 1st at 17xxUT. | ER RAD | O DATA | | | | | | POLA | AR CAP A | BSORP' | TION | | | | GEOM | AGNETI | C STORM | <u> </u> | | |------------------|--------|----|-------------------|-------------------------|---|------------|-------------|-----------------|-----------|--------------|------|------------|------------|--------------|---------|---------|------------------|------------| | Dur.
Min. | | | ak
lux | Obs. | | Gr.
Day | Onset
UT | Rise to
Peak | Dur. | Peak
Int, | Obs. | Gr.
Day | Beg.
TU | Dur. | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | 25
12
26.5 | | 1 | 51)
10 | HHI
HHI
UC
PRA | Apr.
21 | 03 | 0.6d | g | ms | 3 | 4 | | | | | | | | | | | | | | 24 | 00 | 1d | g | m | 1 | 5 | | | | | | | | | | | | | | 26 | 02 | 1.3d | Sc | m | 4 | 5 | | | | | | | | | | | | | | May
08 | 21 | 0,7d | g | m | 4 | . 5 | | 1.8
2.5 | | (1 | 80)
23 | NAG
NAG | NAG | | | | | | | | | | | | | | | | 1.7 | | | | MAG | 1 | | | | | | | | | | | | | | May | 19 | 0200 | 1 | 12, | (1) | L | 26 | 00
0822 | 1d | g
Sc | ms
m | 3
12 | 5
5 | | | | | | | | | | | | | | 30 | 0022 | 1,2d | J.C | | | • | | 29.5
4.5 | i | ! | 549
(34) | Tk
NAG | | | | | | | | June | | | | | | | | | | | | | } | | | | | | | 03 | 04 | 4d | g | ms | 9 | 6 | | 25 | 0045 | • | 464 | TK | | | | | | | | | | | | | | | | 9 | | | 841 | | | | | | | | | | | | | | | | | 71
80 | | > | 370 l
334 | UC
PRA | İ | | | | | | | | | | | | | | | 16
84
1. | 5 | | 135
>15 | UC | | | | | | | | | | | | | | | | 45 | | | >15 | CAV | | | | | | | | | | | | | | | | 5
4.
1. | 5 | >3 | 66
118
3100 | UC
PRA
NBS | | | | | | | | | | | | | | | | 2
5 | | | >5
75 | CAV
UC | • | | | | | | | | | | | | | | | 2
5 | | | 200
135 | N
UC | _ | | | | | 45- | | | | | | | | | 17 | 21- | - 2 d | g | ms | 4 | 5 | | 45
180
4. | | >: | 400
2600 | n
NBS | | June | 20
20 | | | <u>48</u> | | В | 1 | | | | | | | | | | | | | | spectrum obne radio event short duration t the complete ause it repree, bright plage t, the activity ny great solar this catalogue. th at 18xx UT. . represents a very great burst, superposed on a very long-enduring rise and fall in flux that began more than an hour earlier. The flare that is associated with this event is not outstanding, but occurred in a very large, very bright and very active plage. The $\beta\gamma$ spot No. 12417 is one of the largest spots of the year - area equal to 1100 millionths of the hemisphere (Mt. Wislon data). The Type II burst was observed by Ft. Davis over the frequency range 210 - 100 Mc., and was accompanied by the onset of a noise storm. At meter wavelengths the radio event consists of a major burst followed by a long rise and fall in flux. by a long rise and fall in flux. 83. The peak absorption for this PCA event is not known. Bailey refers to this as "a weak event." 84. This active region is similar to the plage described in note No. 65. The p spot No. 12400 is one of the largest spots of the year - area equal to 1200 millionths of the hemisphere. ZIII - 3R | | | | F: | LARE I | DATA | | | | SH | ORT-V | VAVE R | ADIO F | ADEOU | rs | | 10 CI | M. EVEN | TS | - | | |--------------|------------------|--------------------------------|--------------|--------------|------|--------------|-------------|----------------|----------|-------|--------------|--------------|-------------------------|----------------|-------------|--------------------------|-----------------|------------------------------------|-----------------|--------------| | Event
No. | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Imp. | Posit | ion | No. of
Obs. | Туре | Imp. | Beg.
UT | Dur.
Min. | Wide
Spread
Index | No. of
Obs. | Туре | Beg.
UT | Dur,
Min. | Max.
UT | Peak
Flux | McM
Plage | | 104 | July
21 | 1405 | <u>1500</u> | 1410 | 1 | N11 | E62 | 6(4 c) | SL | 1 | 1408 | 23 | - | (2) | | | | | | *407 | | 105 | 21 | <u>1737</u> | 1752 | 1742 | 1 | N22 | W12 | 2(2c) | | | | | | | 2 | 1742.7 | 5 | 1743.3 | 165 | *406 | | 106 | 21 | 2215 | 2302 | | 1- | N20 | W15 | 1(1c) | | | | | | | 6 | 2243.3 | 5 | 2243.7 | 32 | *406 | | 107 | 22 | 108 | 22 | *0953 | 1150 | | 3 | N15 | E51 | 1(1c) | | | | | | | | | | | | *407 | | 109 | 24 | * <u>1712</u>
* <u>1801</u> | 1801
2025 | 1737
1828 | 3 | S 24
S 24 | | 4(4c)
4(4c) | SL
*S | 3 | 1727
1759 | 113
113 | 5
5 | 8 8 | *GB | 1628
(1733)
(1801) | 290 | 1645
1736.8
1810.5
1838,5 | 630 | *407 | | 110
111 | 24
Aug.
01 | 1352 | 1437 | 1420 | 1 | S 35 | E04 | 1(1e) | | | | | | | 3
3
3 | 1400
1407
1438 | 510
18
24 | -
1412.5
1448 | 25
21
18 | *408 | | 112 | 02 | 1432 | 1448 | 1436 | 1 | N26 | E32 | 9(5c) | s | 2- | 1435 | 15 | 5 | 7 | 6 | 1435.5 | 7 | 1436 | 60 | *408 | | 113 | 03 | 114 | 03 | 1721 | 1735 | 1723 | 1 | N26 | E17 | 3(3c) | s | 2 | 1720 | 40 |) 5 | 7 | 6 | 1720.5 | 6.5 | 1721.1 | 90 | *408 | | 115 | 05 | 1900 | 1954 | 1905 | 1 | N26 | w 08 | 4(4c) | s | 1+ | 1904 | 16 | 5 5 | 6 | 6 5 | 1902
1905.5 | 3.5
40 | 1904.5 | 44
-5 | *408 | | 116 | 06 | | | | | | | | | | | | | | SD | 0229,2 | 1,8 | 0229.5 | 255 | | | 117 | 06 | 0423 | 0433 | 0426 | 1- | N25 | w22 | 1(1e) | | | | | | | | | | | | *408 | | 118 | 06 | 119 | 09 | 1330 | 1442 | 1355 | 1 | S33 | W77 | 2(2c) | *SL | 3 | 1340 | 200 | 5 | 6 | 3 | 1304 | > 660 | 1515 | 38 | *408 | 104. This incomplete Type IV event on July 21st at <1513 UT. is being associated with a flare which began earlier, at 1405 UT. The single frequency radio events reported with this flare seem to indicate that such an association is not impossible. No known 10 cm. event is reported with the event at 1405 UT., and the SWF is taken from the CRPL "check-list." The flare in question occurred in a region which is the return of a plage related to events No. 88b and 92. No distinctive event is reported at meter wavelengths. At 450 Mc., NBS reports a great M+ burst, "one of the largest bursts ever observed," from 1411 - 1529 UT. 105. The plage and spot data for this event are similar to that given for event No. 97. No known SWF is reported at the time of the Type II burst on July 21st at 1746 UT., which was observed by Ft. Davis over a frequency range of 200 - 100 Mc. At meter wavelengths the radio event consists of a major + burst. At intermediate and higher frequencies the 106. The plage and spot data for this event are similar to that given for event No. 97. The Type IV emission on July 21st at 2243 UT. was observed by Ft. Davis over the frequency range of 580 - 300 Mc., and appears to be associated with a relatively minor flare for which no known SWF was reported. Ft. Davis also reports an unclassified burst at 2244 UT. 108. It is quite probable that this event on July 22nd at 0953 UT. in region 4075 is not a real flare of importance 3. It may be only a very bright plage. Two other stations were watching a flare in progress in another region on the sun at this same time, and neither of them report this flare in region 4075. It is not likely that they would have missed a
flare of Imp. 3. No known SWF, and no known 10 cm. events are reported at the time of the flare, and no dynamic spectrum observations exist at that time. The response throughout the entire range of the si dicates that the radio event consists of short duration. These are all prob a flare of Imp. 1 in progress at this region 4073. This is a great solar event on July 2: the event described in note No. 92, the aspect to the flarc, SWF, and great Ap spot No. 12496 is a return of the lar in region 4030. The Type IV emission seems to be associated with the secon and was observed by Ft. Davis over frequency range of 580 - 100 Mc. At me radio event consists of two parts - a r with bursts, during the early phase of great rise and fall in flux with a great it, during the second phase of the flat. | RADIC | DATA | | | | | PC | DLÀR CA | P ABSC | RPTION | | | | | GEOM | AGNETIC | STOR | AS | | |---|--|--|--|-------------|------------|------|-----------------|--------|--------|---------------|--------------|-------------|-----------|--------------|---------|------|------------------|------------| | ur.
Iin. | Max.
UT | Peak
Flux | Obs. | | Gr.
Day | | Rise to
Peak | | | Obs. | | Gr.
Day | Beg
UT | Dur. | | Int. | No. Sta.
Rep. | Max.
Kp | | 18
8
7 | 0238 | 1470
(92)
(46) | TK
NAG
NAG | | June
22 | 0500 | 44h | 115 | 40 | <u>B</u> ,L | | June
25 | 0047 | 3.5d | Sc | ms . | 15 | 7 | | 50
8.2
1.3
1.5
8.5
34 | 0311 | 600
>239
164
222
(262)
>77
610 | TK
SYD
SYD
SYD
NAG
SYD
NBS | | | | | | | | | 30 | 0528 | 2 d | Sc | s | 16 | 8 | | 21
3
2.5
1.3 | 0016.5
0016.3
0016.3
0016.4 | >1106
(305)
(70)
(154) | TK
NAG
NAG
NAG | | | | | | | | | July
02 | 0857 | 1.3 a | Sc | ms | 14 | 8 | | 45
20
50
20
60
20
38
22
72
14.5
60
9
28 | 0742
0841
0809.5
0839.6
0809.7
0840.4 | (196)
(2960)
(1690)
928
(7570)
(8200)
113
312
> 324
850
5200 | NAG
NAG
NAG
UC | | | | | | | | | | | | | | | | | 9
28
15
5 | 0745
0837 | > 400
> 400
> 400
54
55 | UC
JOD | | July
03 | 100 | 0 12 h | 52 | 74 | <u>B</u> ,L,H | | | | | | | | | | 7.7
7.5
8 | 0733.5
0733.9
0734.8 | >1255
(147)
(151) | TK
NAG
NAG | | | | | | | | | 05 | 0043 | 0.5d | Sc | ms | 14 | 7 | | 53
47
40
30
18
36 | 1748
1757 | 48
(627)
(200)
> 324
1000
> 200 | UCL
HHI
HHI
UC
N
UC | | | | | | | | | | | | | | | | | 2 4 2 | 0115.3
0115.5
0114 | 34
(24)
1200 | NAG
NAG
NBS | | | | | | | | | 19 | 13 | 0,5d | g | m | 2 | 5 | | 9
15 | 0019
0018,6 | 1016
(122) | TK
NAG | | | | | | | | | | | | | | | | | 1.5
4
9
2
8
4
70 | 0633.2
0700.3
0701 | 820
916
(122)
78
24
70 | TK
NAG
UC
N
UC | | | | | | | | | | | | | | | | | 14
14
1.5
31.5
8
6
16
75 | 1321,5
1330,5
1338,9
1355,7 | >366
168
210
>362
1300 | UC
PRA
NBS
UC | | | | | | | | | | | | | | | | | -burs | | F-series bull | | 1 | | | - | | No. 97 | No dynai | nic spectrum | observation | s exist | at the tir | ne | | | | -burst ype IV ire ob-meter najor + 101. The plage and spot data for this major SWF on July 21st at 0007 UT. are similar to that given for event No. 97. In the dynamic spectrum, in addition to the small Type III burst, Ft. Davis also reports an unclassified burst at 0019 UT. No distinctive event is reported at meter wavelengths at the time of the SWF, and large microwave bursts are reported at the very high frequencies. 102. The plage and spot data for this major SWF and 10 cm. burst on July 21st at 0647 UT. are similar to that given for event No. 97. No dynamic spectrum observations exist at the time of the event. Only a minor burst is reported at meter wavelengths, and mostly minor bursts of short duration are reported at intermediate and higher frequencies. 103. The plage and spot data for this event are similar to that given for event No. 97. No dynamic spectrum observations exist at the time of the large 10 cm, burst on July 21st at 1334 UT. (This burst is one of those rare events which is preceded by a "precursor.") The single frequency reports indicate that the radio event consists of a major + burst, at the intermediate and higher frequencies. event om the in the | CM
Gr. | AP
Day | Mean
Long. | Mean
Lat. | Ave.
Int. | Max.
Area | No.
Flares | Age In
Rotations | Ident. | MT.W.
Type | CMP
Gr. Day | | н | When
Seen | Агеа | MT.W | |-----------|-----------|---------------|--------------|--------------|--------------|---------------|---------------------|--------|---------------|----------------|------|----|--------------|------|-------| | | ıly | | | | | | | | | July | Lat. | | Jeen | | 110. | | 26 | 0. | 95° | N16 | 3.5 | 9,000 | 54 | 3 | 4039 | .lβpL | 26.1 | N10 | 26 | 19-1 | | 12503 | 20 | • | 1400 | | | | | | | 40.4 | | | | | | | | 22 | .0 | 148° | S 21 | 3 | 7,000 | 31 | 3 | 4030 _ | lppl | 22.8 | S24 | 29 | 17-28 | | 12496 | At
01 | | 9° | S 28 | 3.5 | 7,600 | 55 | 2 | 4044 | lapl | Aug.
1.0 | S 28 | 26 | 26-6 | | 12513 | | | | | | | | | | | *Lyl | 2.5 | S 30 | 26 | 27-8 | | 12514 | | | | | | | | | | | | | | | | | | | 04 | .5 | 330° | N23 | 3.5 | 5,000 | 42 | 2 | 4057 | lppl | 4.6 | N26 | 23 | 28-10 | | 12516 | 1 | es ir | 1- | from | ionalaa | is there | | | | the hours. T | | | | | | | th at 1712 UT. Like ere is a "doubling" 10 cm. burst. The starting at 1802 UT d phase of the flare, he enite observable ter wavelengths, the nodest rise and fall, the flare, and a very burst superposed on re. Only at the high This small PCA event is not listed in Bailey's catalogue of principal events, but is listed in the NASA proton manual. The intensity of the event is estimated from riometer records. 111. This Type IV event on August 1st at 1409 UT, is associated with a rather modest flare which occuired at a high latitude of 35°, in a large, very bright and very active plage in its second rotation. The y spot No. 12514 is a return of yspot No. 12449 in a region 4044, No known SWF is reported at the time of the Type IV event. Note that the 10 cm. event consists of several small bursts superposed on a long-enduring rise and fall in flux that listed for more than 8 radio frequency reports indicate that a large burst occurred at all wavelengths practically simultaneously with the start of the Type IV burst. 112. This Type II burst on August 2nd at 1438 UT, was observed by Ft. Davis over a frequency range of 210 - 100 Mc., and is associated with a relatively minor flare event in a very bright and active plage. This region, plage 4083 is responsible for 5 events in this catalogure - Nos. 112, 114, 115, 117, and 121, and probably also for two others - Nos. 113 and Ills. The radio event consists of a major burst of short duration which occurs practically simultaneously at all radio frequencies, from the low to the very high frequencies. | \neg | Tuno T | DYNAMIC | SPECTRU | M DATA | | | | | 200 M | C/S DATA | | | | | | HEF | |----------------------------|--|---------------------------------|----------------------|----------------------|-------------|----------------|--|------------------------|----------------|------------|--------------------|-------------|---|--|--|------------------------------| | Event
No. | Type I
Time/Max.
Int. | Type III
Time/Int. | Type II
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Туре | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc/s | Туре | Beg.
UT | _ | | 85 | I with con-
tinuum, in
progress all
day | | | | S | | | | | | | | 9500
2000
1000 | CD
CD
CD | 0232
0233
0234 | | | 87
87a | | | | | | | | | | | | | | | | | | 88a
88b | I < 2335-
\$-0534/1 | III < 2335-
\$>0534/3 | | | s | | CD | 2330 | 0.7 | | 250 | тк | 9500
1420
1420
1420
1000
600
460 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2352
2357
0016
0035
0011
2340
2346 | | | 89 | | | | | | | | | | | | | 9500 | SID | 0015 | ; | | 90 | I in progress
s all day | III in prog-
ress all
day | | | S | | CA | 0030 | 35 | 0047 | 400 | тк | 3750
2000
1000 | 8D
8D | 0015
0016
0015.7 | | | 91
92 | | | | | | | CD
CD
CD | 0802.5
0837
0849 | 1.5
4
25 | | 300
3400
700 | N
N
N |
9400
9400
2000
2000
1000
600
600
545
545
169
80 | FD
CD
CD
CD
CD
CD | 0730
0831.
0726
0831
0723
0836.
0722
0824
0833
0805
0832
0834 | | | 93
94
95
96
97 | | | | | | | | | | | | | 9500 | CD | 0832
0731 | | | 31 | | | | | | | | | | | | | 2000
1000
600 | CD | 0731
0731
0735 | .5 | | 98 | [1754-
⁸ 1819/1 | | * 1801-
1825/3 | н | 580-
100 | | CD | 1753 | 54 | | 850 | С | 9400
1500
600
541
161 | CD
CD | 1740
1742
1751
1751
1803 | | | 99 | : | G0114-
0116/3 | *0125-
0131/2 | | s | | СО | 0113.8 | 1.8 | 0114.5 | 900 | тк | 200
100
16 | CD CD | 0114
0114
0113 | 1 | | 100
101 | I 0112-
80127/1 | g0016/1
b0033/1 | | | н | | | | | | | | 950
200 | | 0012
0012 | | | 102 | VAZ 1/ 1 | 25000/ 1 | | | | | CD | 0702 | 14 | | 120 | N | 950
950
100
60
54
16 | 0 CD
0 SD
0 CD
0 -
5 CD
9 CA | 0632
0659
0655
0659
0702
0700
0657 | 9.8
5
9
2
0
7 | | 103 | | | | | | | СБ | 1329 | 30 | | >250 | N | 60
60
53
53
45
45 | 6 SD
6 CD
6 CD
6 CD
6 SD
6 CD | 133:
134:
132:
133:
132:
133:
134: | 6
1
1.5
8
6
2 | This active region is similar to the plage described in note No. 80. are reported at meter wavelengths, Region 4005 in a remarkable plage, being directly responsible for 7 events into actalogue (Nos. 97, 99, 101, 102, 103, 105, and 106) and also probably for events No. 100 and 107. 87. The large SWF on July 16th at 0721 UT, is associated with flare activity at the east limb of the sun, in a region which is very large, very bright, and extremely active. This plage is a return of region 4024, which was responsible for events No. 82, 85, and 88a, and probably also for Nos. 83, 86, 87, and 89. The βf spot No. 12481 is a return of the βγspot No. 12417 in region 4024. No dynamic spectrum observations exist at the time of the large SWF, and no distinctive events complex burst followed by a very long-enduring brief burst of emission was observed by Pt. Davis over the eservable range of frequencies from 580 - 100 Mc. wavelengths, the radio event consists of a great 99. The plage and spot data associated with this Type on July 17th at 0125 UT, are similar to that given No. 97. The SWF which is reported here, is taken CRPL unpublished "check-list," and does not appe 2. VII -4R (2. **VIII** | ER RADIO I | ATA | | | - | POLAR | CAP ABSC | RPTION | | | | | | GEOMAG | NETIC S | TORMS | | | |--|--|--|------------------------------------|--------------------|-------|-----------------|---------------|--------------|------|-------------|------------|------------|--------|---------|-------|------------------|------------| | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Gr.
Day | | Rise to
Peak | | Peak
Int. | Obs. | | Gr.
Day | Beg.
UT | | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | 10
70
32
44 | 1428.6
1459.2 | > 1300
> 1300
> 1300
27000
29000 | N
NBS | | | | | | | | | | | | | | | | 9
2
5 | | 72
60
> 243 | UC
N
UC | | | | | | | | | | | | | | | | 4
5.5
5
14
10 | 2243.7
2246.3
2214.1
2243.4
2306.6 | (30)
(74)
11000
> 26000
260 | NAG
NAG
NBS | İ | July
22 | 0419 | 1đ | Sc | ms | 6 | 6 | | 3
3
8.5
14
2.5 | 0952 | 162
>1400
351
126
(100) | UC
N
PRA
UC
CAV | | | | | | | | | | | | | | | | 18
19
48 | 1736
1737 | (336)
(155)
246 | нні
нні
uc | | | | | | | | | | | | | | | | 29
90
74
39 | 1830.8
1832 | 1200
1700
1000 | N
NBS
NBS | July
2 4 | 2015 | 1; | 2 (2) | L,i | ı. | | | | | | | | | | 11
87
20
12
240 | 1412
1413 | (295)
(122)
66
75
220
> 240 | HHI
HHI
UC
N
NBS
UC | | | | - (- / | _, | • | | | | | | | | | | 7.5
2.5 | 1436
1436 | (355) | нні
нні | | | | | | | | | | | | | | | | 5
3
3
27 | 1436 | 72
70
2800
> 240 | UC
N
NBS
UC | | | | | | | : | Aug.
03 | 1557 | 0.54 | Sc | m | 8 | | | 7
4.5
5
7 | 1722.9 | 114
250
340
250 | UC
N
NBS
UC | | | | | | | :
:
: | •• | 2007 | 0.00 | S.C. | | • | 6 | | 5
7 | 1905 | 250
>230 | NBS
UC | | | | | | | | | | | | | | | | 1
1 | 0229.7
0229.2 | 409
(13) | TK
NAG | | | | | | | | | | | | | | | | 0.5 | | 61 | SYD | | | | | | | | | | | | | | | | 82
1
0.4
105
1 | | 170 | UC
UC
NBS
UC
UC | | | | | | | | 06 | 0509 | 1d | Sc | m | 9 | 6 | | gust 9th at
portant Ha
e sun. The
flux which
distinctive
ime of the
on a long-
er low and | | | | | | , | | | | | | | | - | | | | - 5R | | | | | FLARE | DATA | | | | SF | IORT-V | WAVE F | ADIO F | ADEOU | TS | | 10 C | M. EVEN | TS. | | | |--------------|-------------|------------|------|------------|------|-------|------|----------------|------|--------|------------|--------------|-------------------------|----------------|---------|------------------|--------------|------------|--------------|---------------------| | Event
No. | Gr.
Day | Beg.
UT | | Max.
UT | Imp. | Posit | tion | No. of
Obs. | Туре | Imp. | Beg.
UT | Dur.
Min. | Wide
Spread
Index | No. of
Obs. | Type | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | McM.
Plage No. (| | 120 | Aug. | 120
121 | 09
10 | 0125 | 0142 | 0129 | 1 | N26 | W71 | 1(1c) | *SL | 3 | 0100 | 60 | 5 | 7 | *CD | 0126.7 | 2.5 | 0127.5 | 1400 | *4083 | 1 | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | 122 | 12 | 123 | 20 | 124 | 22 | | | | | | | | l | | | | | | | | | | | *4112 | | 125 | 28 | *0913 | 1404 | 0925 | 3 | S31 | E33 | 11(4c) | •s | 3 | 0917 | 138 | 5 | 5 | *6 | 0943 | 40 | | 1192 | *4125 | | | | | | 0955 | | | | | | | | | | | 4 | 1030 | 90 | | | | | | | | | | | | | | l | 1 | | | | | | | | | | | | | 126 | 28 | 2010 | 2048 | 2024 | 2+ | S 28 | E30 | 4(3c) | s | 2+ | 2020 | 18 | 5 | 8 | *2
4 | 2017.7
2022.5 | 5
15 | 2019,5 | 760
10 | *4125 | 127 | 29 | 128
129 | 29
29 | | | | | | | | | | | | | | | | | | | l | | 130 | 30 | | | | | | | | SL | 2 | 2215 | 25 | 5 | 9 | 2 | 2210 | 10 | 2213. | 7 480 | : | | "" | 00 | | | | | | | | | | | | | | 4 | 2220 | 40 | | 30 | 1 | | | | ŀ | 1 | | | | | | | 131 | 31 | | | | | | | | | | | | | | | | | | |] | | 132 | 31 | *1257 | 1455 | 1312 | 3 | N25 | W02 | 11(4c) | *s | 3+ | 1303 | 220 | 5 | 10 | 9 | 1256 | 5 | | 13 | *4124 | | | | | | | | | | | | | | | | | *2
4 | 1301
1406 | 65
205 | 1315. | 5 3900
35 | | | 1 1 | | | | | | | | | 1 | | | | | | | | | | | | | | • | | | | | | | | 1 | | | | | | | | | | | | | | | , | İ | | | | | | | | | | | ļ | | 133 | 31
Sept. | 134 | 01 | 0204 | 0224 | 0209 | 1 | N13 | W08 | 2(1c) | *s | 3 | 0204 | 51 | 5 | 5 | l | | | | | *4124 | | | | 1 | | | | | | | | | | | | | | | | | | 1 | Ì | 135 | 01 | 0946 | 1030 | 0952 | 2 | N12 | W09 | 6(2c) | s | 2 | 0950 | 40 | 5 | 4 | •6 | 0949 | 7 | 0950 | 605 | *4124 | i | | | 1 | 136 | 02 | | | | | | | | 1 | | | | | | | | | | | | | 137 | 02 | 0409 | 0445 | 0412 | 1 | N14 | W25 | 3(1c) | SL | 1+ | 0400 | 70 | 4 | 2 | CD | 0411 | 13.5 | 0420 | 437 | *4124 | | 1 | ļ | | | | | | | | | | | | | | | | | 1 | | | | | | 121. The plage and spot data for this event are similar to that given for event No. 112. The Type II burst on August 10th at 0129 UT., and large SWF and 10 cm. burst, are associated with a modest flare of Imp. 1 which occurred in region 4083 when it was near the west limb of the sun. The Type II burst was observed by Ft. Davis over a frequency range of 330 - 100 Mc. The single frequency reports indicate that the radio event probably consisted of a large burst of short duration that swept through the entire frequency range, from high to low frequencies, almost simultaneously. Three of the nine stations that report this storm do not start the storm until the following day, on 13th at 03xxUT. 123. This storm was reported by only three stations, which were all located at high geomagnetic latitudes. 124. This active region is similar to the plage described in note No. 35. The βp spot No. 12563 is a return of the βp spot No. 12503 in region 4075. 125. This is a very great solar event on August 28th at 0913 UT., which occurred in a very large, very bright, and very active plage in its third rotation. The rereturn of region 4082, which was respoin No. 119 and was followed by the PCA evcomplex 7 spot No. 12579 is a return of 7 in region 4082, which was a return of 8 region 4044. No dynamic spectrum obserthe time of the large flare at 0913 UT. H radio emission has been deduced by Hakura frequency events. These reports indicate to occurred which had the characteristic of flux at meter wavelengths and at the frequencies. | | | DYNAM | IIC SPECTRU | M DATA | | | | | 200 M | C/S DATA | | | | |
ő | |--------------|--|--|----------------------|----------------------|--------|---------------|--------------|----------------------|---------------|------------|--------------|-------------|---|----------------------------------|--| | Event
No. | Type I Time/Max. Int. | Type III
Time/Int, | Type II
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Mc/s | Туре | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc/s | Туре | Beg
UT | | 104 | | | | *<1513-
1523/3 | н | 580-
200 | | | | | | | 545
545
450
450 | CD
CD | 1406
1418
1411
1445 | | 105 | | G1743-
1744/3 | *1746-
1752/3 | | н | 200-
100 | CD | 1742 | 8 | 1744 | >70 | C | 600
545
169 | ESD
SD
CA | 1741
1743
1743 | | 106 | C2212-
2215/1 | G2208-
2209/3
g2213-
2215/3
g2241/2
g2247/2 | | * 2243-
2315/3 | н | 580
300 | FD | 2237 | 11 | | >250 | N(H) | 9400
1000
450
450
450 | CD
F
CD
CD
CD | 2243
2241
2211
2228
2303 | | 107 | | | | | | | | | | | | | | | | | 108 | | | | | | | СО | 0950 | 3 | | >250 | N | 600
545
536
169
81 | CD
CD
CD
FA
CD | 0950
0950
0947
0950
0951 | | 110 | I in progress s all day | b1819/2+
g1924/1
G1926/1+ | | * 1802-
1915/3 | н | 580-
100 | M
M
CA | 1645
1801
1812 | 35
94
8 | 1834 | > 200 | c
c
c | 9400
1500
600
600
545
450
167 | 50
50
CD
CD
CD
CD | 1730
1730
1801
1851
1801
1803
1610 | | 111 | I in progress | g1356/1 | | * 1409- | н | 270 | | | | | | | | | | | | \$1303-1441/2 | g1356/1
g1404/3
b1405/2
g1432/1
b1436/1
g1454/3 | | 1459/2 | н | 270-
100 | M
CD | 1353
1409 | 47 | 1415 | | c
c | 9400
1500
600
545
450
169 | SED
SED
SED
MED
CA | 1409
1408
1407
1409
1350
1408 | | 112 | I 1430-
1436/2
C1436-
1438/3 | b1430/1-
b1433/1-
G1436-
1437/3
g1440/1 | *1438-
1442/3 | | Н | 210-
100 | CD | 1436 | 6 | 1436.5 | > 53 | С | 9400
2000
600
545
450
169 | CD
CD
CD
CD
CD | 1435
1435
1436
1436
1435
1438 | | 113 | | | | | | | | | | | | | 1 | | | | 114 | C1720-
1727/3
I 1720-
S1836/2 | g1720-
1722/3
G1723-
1725/3
g1727/2 | *1724-
1729/3 | | Ħ | 160-
100 | CD | 1720 | 8 | | > 53 | С | 600
545
450
169 | CA
CD
CD
CD | 1721
1720
1720
1720 | | 115 | 1 2030-
\$2400/1 | G1902-
1906.5/3
G1907-
1913/2
G1920-
1922/2 | *1907-
1910/3 | | н | 165-
100 | SD | 1902 | 3.5 | 1905 | >800 | OSL | 450
169 | CD
CD | 1903
1902 | | 116 | | G0229-
0230.5/3
b0231/3
G0232-
0233.5/2 | *0234-
0246/2 | | s | | | | | | | | 9500
1000 | CD
SD | 0229
0229 | | 117 | | g0423-
0425/1
G0425-
0427/2
g0427.5- | *0431-
0438/2 | | s
• | | SD | 0425.5 | 0.5 | | 240 | TK | 600 | CD | 0427 | | | | 0430/1 | | | | | | | | | | | | | | | 118 | I 1246-
⁸ 1420/1 | g1312/2
g1315/2+
G1517-
1519/3 | | | н | | | | | | | | 600
600
450
169 | 80
80
80
80
80 | 1300
1314
1354,
1200 | 114. The plage ans spot data for this event are similar to that given for event No. 112. The Type II burst on August 3rd at 1724 UT, was observed by Pt. Davis over a frequency range of 160 - 100 Mc. The same comments can be made about this Type II burst and its related optical and radio events as were made about the Type II burst described in note No. 112. 115. The plage and spot data for this event are similar to that given for event No. 112. The Type II burst on August 5th at 1907 UT was observed by Ft. Davis over a frequency range of 165 - 100 Mc. See comments in note No. 112. It should be noted that the associated 10 cm. burst at 1902 UT. is followed by one of those periods of reduced flux, referred to as "absorption" or a "negative burst." Wavelengths at the time of the Type II burst, and only a minor burst of very short duration was reported at the higher frequencies. See comments in note 112. The plage and spot data for this event are similar to that given for event No. 112. No SWF is reported at the time of the Type II burst on August 5th at 0431 UT., and no 10 cm. observations exist at this time. See comments in note No. 112. 116. No known flare or SWF were reported at the time of the Type II burst on August 6th at 0234 UT., therefore plage 119. The plage and spot data for this event are similar to that and spot data for this event are not available. (Since region 4083 has been responsible for the Type II events described in Nos. 112, 114, 115, 117 and 121, it is tempting to assume that this event on August 6th is also due to similar activity in this region. Indeed, the ability to produce Type II bursts appears to be one of the outstanding characteristics of the region.) No distinctive event was reported at meter wavelengths at the time of the Type II burst, and only a minor burst of very short duration was reported at the higher frequencies. See comments in note 112. note No. 112. given for event No. 111. The major SWF on At 1340 UT. Is associated with a relatively unim brightening in a region near the west limb of the associated 10 cm. event consists of an increase in lasts throughout the observing day (11 hours). No events are reported at meter wavelengths at the large SWF, and only minor bursts, superposed enduring rise and fall in flux, are reported at oth intermediate single frequencies. 2.011 -5R | | | PLA | GE DAT | <u>A</u> | | | | · | | UNSPOT | | | Area | MT.W. | |--------------|---------------|--------------|--------------|-----------------|---------------|---------------------|---------------------------------|--------------------------|------------------------------|-------------------|----------------|------------------------|------|-------------------------| | P
Day | Mean
Long. | Mean
Lat. | Ave.
Int. | Max.
Area | No.
Flares | Age in
Rotations | Ident. | MT.W.
Type | CMP
Gr. Day | Mean
Lat. | н | When
Seen | Area | No. | | Aug.
22.5 | 92°
353° | N14
S 27 | 3.5
3.5 | 22,000
8,000 | 43
61 | 4 3 | 4075 and 4078 4082 | lad
lBpl
• l7L | Aug.
21.6
21.9
31.1 | N10
N16
S30 | 12
26
28 | 15-20
15-27
24-6 | | 12562
12563
12579 | | 31.: | 5 3334 | N22 | 2 3.5 | 21,000 | 110 | 3,2 | 4083,
4084,
4095,
4096 | dbpl
• Ibyl
• Ibyl | 30.8
31.8 | N25 | 17
23
20 | 27-5
25-7
25-6 | 1700 | 12585
12580
12581 | | | | | | | | | | | | | | | | | ble for event No. 120. The pot No. 12514 t No. 12449 in tions exist at ever, Type IV om the single a great burst ise and fall in intermediate given for event No. 125. The Type II burst on August 28th at 2022 UT, was observed by Ft. Days over the frequency range 330 - 100 Mc., and was also observed by Michigan. The 10 cm. event consists of a large burst of relatively short duration. The single frequency reports indicate that the radio response consists of a major burst of very short duration. The single frequency reports indicate that the radio response consists of a major burst of very short duration at the low and intermediate frequencies. - 130. No flare observations were being made at the time of the Type II and Type IV events on August 30th at 2212 UT., therefore plage and spot data for this event are not available. The single frequency events, however, indicate that a major event took place on the sun, which consisted of a 2. VIII - 6L | | L | | FI | LARE D | ΛТΑ | | | | SH | ORT-W | VAVE RA | ADIO FA | | `S | | 10 C | M. EVE | NTS | | | |--------------|-------------|--------------------------------|--------------|----------------------|--------|------------|-------------|----------------|----------|-------|--------------|-----------|----------------|----------------|-----------------------|----------------------------------|----------------------|--------------------------------|-----------------------|--------------------| | Event
No. | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Imp. | Pos | ition | No. of
Obs. | Туре | Imp. | Beg.
UT | Dur. | Wide
Spread | No. of
Obs. | Туре | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | McM.
Plage No. | | No. | | | | | | | | Ous. | | | | WIIII, | Index | | | | | | Flux | | | 138 | Sept.
02 | a <u>1257</u>
b <u>1313</u> | 1346
1410 | 1303
1316
1330 | 1 2+ | N10
S34 | | 6(3c)
5(4c) | G
S | 1 2- | 1259
1324 | >25
43 | 5 | 8 | 3
2
2
2
2 | 1247
1258
1317.3
1321.3 | 250
6
4
5.5 | 1330
1259.7
1319
1324 | 105
56
30
40 | a *4124
b *4125 | | 139 | . 02 | 140 | 03 | 0037 | <u>0116</u> | 0049 | 1 | N24 | W24 | 1(1c) | s | 2+ | 0040 | 35 | 5 | 5 | CD | 0034.5 | 17.5 | 0037 | 462 | *4124 | | | 03 | 1019 | 1103 | 1023 | 2 | N15 | W40 | 6(2c) | s | 2+ | 1020 | 42 | 5 | 5 | *6 | 1021.5 | 13 | | 738 | *4124 | | 141 | 03 | 1018 | 1103 | 1023 | 2 | NIJ | W-10 | 0(20) | 3 | 2+ | 1020 | 42 | 3 | 3 | | 1021,5 | 13 | | 130 | 1,21 | | 142 | 03 | *1412 | <u>1656</u> | 1428 | 3 | N23 | W30 | 14(7c) | *s | 3 | 1420 | 103 | 5 | 10 | *2
4 | 1417
1442 | 25
130 | 1424 | 1350
70 | *4124 | | 143 | 04 | 144 | 07 | 0810 | 0845 | 0823 | 1+ | N15 | w 88 | 12(4c) | *s | 3 | 0806 | 36 | 5 | 11 | *2 | 0811.5 | 9 | | 2220 | *4124 | | 145 | 08 | 1627 | 1634 | | 1- | \$13 | E25 | 2 (2c) | | | | | | | | | | | | 4138 | | 146 | 10 | * <u>0223</u> | 0300 | 0250 | 3 | N14 | E16 | 1(1c) | s | 2 | 0225 | 20 | - | 1 | SD | 0223 | 35 | 0228 | 349 | *4134 | | 147 | 11 | 0140 | 0200 | 0142 |
1- | N15 | E90 | 2(2c) | G | - | 0157 | >45 | - | 1 | SD | 0141,2 | 1 | 0141.5 | 376 | 4148 | | 148 | 11 | *0236
* <u>0243</u> | 0722
0722 | 0300
0300 | 3
3 | N13
N13 | W02
W02 | 5(3c)
5(3c) | *SL | 3 | 0244 | 110 | 5 | 5 | *CA | 0244 | 75 | 0300,7 | 1110 | 4134 | | 149 | 12 | | | | | | | | G | 2 | 0202 | 57 | - | 1 | *CD | 0220,5 | 2 | 0221.3 | 610 | | | 150 | 12 | <u>0703</u> | 0740 | 0713 | 2 | N09 | W15 | 7(3c) | S | 3- | 0702 | 32 | 5 | 6 | 6 | 0708 | 7 | 0709 | 443 | 4134 | | 151 | 12 | L | L | | | | | | | <u> </u> | | | | | | 1 | | oues th | | | 1 | 138. Both of these optical events, on September 2nd at 1257 and 1313 UT., are given here as possible predecessors of the PCA event that follows at 1700 UT. (event No. 139). Whether the PCA is due to one or the other flare event, or the combined effect of both flares, cannot be determined unambiguously. Information is given about both flares, one of which occurred in the active region 4124 (for plage and spot data, see event No. 132), the other in active region 4125 (for plage and spot data, see event No. 125). The 10 cm. event consists of several small bursts superposed on a long-enduring rise and fall in flux. In the dynamic spectrum, Ft. Davis was not observing at this time. Although the Michigan reports indicate only weak Type III bursts, and noise in progress throughout the day, Type IV radio emission of importance 3* is deduced by Hakura from 1310 - 1410 UT. This seems quite possible, from the single frequency events. At meter wavelengths the radio event consists of a rise in base level, and the other single frequency reports indicate that the event is a major + burst which consists of a large burst and a rise and fall in flux. The plage and spot data associated with Type II event on September 3rd at 0036 UT, are similar to that given for event No. 132. The Type II burst was observed by Ft. Davis over the frequency range 580 - 100 M 141. The plage and spot data for this evingiven for event No. 132. No dynamic sexist at the time of the large 10 cm. but 1021 UT. No distinctive event wavelengths at the time of the burst. 142. This is a large solar event, on Septe The plage and spot data are similar No. 132. The 10 cm. event consists followed by a long-enduring post-by | DATA | | | | POL | AR CAP | ABSORI | PTION | | \Box | - | | GEOM | AGNETIC | STORM | .s | | |--|--|--|---|-------|---|---|-------|--|---|---|---|--
---|--|--|---| | Max.
UT | Peak
Flux | Obs. | Gr.
Day | Onset | t Rise to | | | Obs. | | Gr.
Day | Beg.
UT | Dur. | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | 0128.5
0128.6
0128.7
0130
0127.9 | 1689
(550)
> 196
(175)
77
1200 | TK
NAG
SYD
NAG
SYD
NBS | Aug
09 | | 10h | 50 | 25 | В | | P | | | | | | | | | | | | | | | | | | Aug.
12
20 | 04
13 | 2d
0.8d | g
Sc | ms
m | 9 | 6
5 | | 0950
0947
1001 | (693)
(692)
60
-
30 | HHI
UCL
UC
UC | | | | | | | | | | | | | | | | 2022
2017.9
2023.6 | 54
> 7100
> 5700 | SYD
NBS
NBS | | | | | | | | | | | | | | | | | | | 29 | | | 27 | 26 | <u>в</u> ,н | | | | | | | | | | | | | 29 | 1400 | 12h | 58 | 66 | ₿,∟,н | | 29 | 1921 | 1d | Sc | ms | 16 | 7 | | 2213
2213.7
2213
2215
2214.6
2234.5
2215.2
2233 | > 1351
(619)
(433)
315
1900
420
> 5000
810 | TK
NAG
NAG
SYD
NBS
NBS | | | | | | | | | | | | | | | | | (> <u>900</u>) | нні | | | | | | | | 31 | 12 | 1d | g | ms | 9 | 7 | | 1325 | > 450
> 5000
14000
>> 300 | HHI
UC
N
NBS
UC | | | | | | | | | | | | | | | | 1252
1305 | 132 | JOD | | | | | | | | | | | | | | | | | | | 31 | 1500 | 12h | 46 | 39 | <u>B</u> | | | | | | | | | | 0204.5
0233.2
0238.8
0242.0
0204
0205
0205
0205 | 934
491
481
480
(238)
(195)
264
(83) | TK
TK
TK
TK
NAG
NAG
SYD
NAG | | | | | | | | | | | | | | | | 0950
0951
0954
0946 | (545)
324
550
590
>330
>128 | HHI
UC
N
GOR
UC
JOD | | | | | | | | Sept.
02 | 0315 | 3.2a | Sc | ms | 18 | 9 | | 0419
0419
0416 | 501
(23)
20 | TK
NAG
NAG | | | | | | | | | | | | | | | | | Max. UT 0128.5 0128.6 0128.7 0130 0127.9 0950 0947 1001 2022 2017.9 2023.6 2213 2213 2213 2213 2213 2213 2213 22 | Max. Peak UT Flux 0128.5 1689 0128.6 (550) | Max. Peak UT Fiux Obs. Fiux Obs. Provided Provi | Max. | Max. Peak UT Flux Obs. Gr. Day UT Comparison Compar | Max. Peak Obs. Gr. Onset Rise to Day Out Peak UT Flux Obs. Gr. Onset Rise to UT Peak Aug. O9 1600 10h 0128.5 1689 TK 0128.6 (550) NAG > 196 SYD 0128.7 (175) NAG 0130 77 SYD 0127.9 1200 NBS 0950 (693) HHI HII 1001 (692) HHI 60 UCL - 30 UC N N N N N N N N N N N N N N N N N N | Max. | Max. Peak Obs. Gr. Onset Rue to Dur. Peak Int. | Max. Peak Obs. Gr. Onset Rise to Dur. Peak Obs. | Max. Peak Obs. Gr. Onset Rise to Dur. Peak Obs. | Max. Peak Ole. Day Onset Rise to Dur. Peak Ols. Gr. Day | Max. Peak Olbr. Gr. Olbr. Tree to Dur. Peak Olbr. Dur. Peak Olbr. Dur. Dur. Peak Olbr. Olb | Max. Peak Ols. Gr. Olist Rise to Dur. Peak Ols. Gr. Dur. | Mag. Peak Olsr. Cgr. Onast Rise to Dur. Peak Obs. Cgr. Oss. Type | Max. Peak Ois. Gr. Ous. Gr. Ous. Car. Ous. Car. Ous. Ois. Oi | Mart Peak Othe Cr. Say Othe Cr. Say Cr. Cr. Cr. Say Cr. | given for event No. 132. No dynamic spectrum observations exist at the time of the large 10 cm, burst at 0949 UT. Large bursts, of relatively short duration, are reported throughout the entire spectrum range covered by the single frequency observations. ly also to that and no of the le fre-onsists curred 136. This is one of the few great geomagnetic storms for which the 3-hourly Kp value reaches 9. Seven of the 18 stations rate this as a severe storm. 137. The plage and spot data for this event are similar to that at meter wavelengms at the time of the Type in burst at 0423 UT. In the dynamic spectrum, Sydney also reports a Type III noise storm, and bursts of unclassified activity, in progress throughout the day. | | Type I | | MIC SPECTR | | | | | | 200 | C/S DAT | | | + | | | |--------------|--------------------------
--|----------------------|----------------------|-------------|----------------|----------|--------------|--------------|----------------|--------------|-------------|--|--|--| | Event
No. | Time/Max.
Int. | Type III Time/Int. | Type II
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Туре | Beg.
UT | Dur,
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc/s | | Beg
UT | | 120 | | | | | | | | | | | | | | | | | 121 | C0127.5-
0128.5/3 | g0127.5/1
G0128/2
g0129-
0131/1
g0131-
0132/1 | *0129-
0134/3 | | н | 330-
100 | CD | 0129.5 | 5.5 | | | тк | 9500
2000
1420
1000
600
167 | CD
SD
CD
CD
CD | 0126
0127
0128
0129
0129 | | 22 | | | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | | | 25 | | | | * (0930- | нк | | CD | 0917 | 88 | 0945 | 100 | SIM | 9400 | CD | 091 | | | | | | 1045/3) | | | SD | 0930 | 75 | | ••• | N | 2000
1500
600
600
600
545 | CD
CD
SD
MD
SD
SD | 0910
0900
0914
0921
0942 | | 26 | 1 2019-
>2400/3 | G2018-
2021/2-
G2022-
2023/3
G2023-
2026/3 | *2022-
2026/3 | | <u>H</u> ,M | 330-
100 | CD | 2022 | 5 | 2024.5 | >450 | С | 600
450
167 | CD
CD | 2021
2017
2021 | | 27 | | | | | | | | | | | | | | | | | 28
29 | | | | | | | | | | | | | | | | | 30 | I in progress
all day | g2211/3
G2213- | *2214-
.2217/3 | | н | 300-
100 | CA | 2205 | 9.5 | 2206 | 1120 | HIR | 9500 | С | 2212 | | | an ony | 2216/3
g2219/1
G2223-
2225/1
b2235/2 | . 2217/3 | * 2212-
2243/3 | н | 580-
100 | | | | | | | 2000
1000
600
450
450
167 | CD
CD-F
CD
CD
CD
CD
CD | 2210
2211
2214
2211
2220
2213
2223 | | 31 | | | | | | | | | | | | | | | | | 132 | I in progress
all day | g1306-
1307/3
b1309/3
G1341-
1343/3
G1346-
1348/3
G1349-
1351/3
g1352/3
g1354/3
g1356/3 | | *1301-
>1600/3 | <u>н</u> ,м | 580-
100 | CD | 1303
1321 | 13
84 | 1312
1350 | >1200 | <u>c</u> ,n | 9400
2000
600
545
450
169
169
80 | CD
CA
CA
CA
CA
CA
CA
CA
SA
CD
CD | 1302
1258
1300
1259
1300
1303
1342
1250
1300 | | 33
34 | | | | | | | CD | 0238.5 | 0.5 | 0000 1 | 1500 | | | | | | | | | | | | | CA
CA | 0238.5 | 0.7
2.7 | 0239.1
0243 | 1500
2400 | TK
TK | 9500
9500
9500
9500
3750
2000
1420
1000 | ECD
SED
SED CD
SED CD
SED CD | 0203
0232
0238
0241
0203
0203
0204
0203 | | 35 | | | | | | | CD | 0949 | 6 | | > 2000 | N | 9400
600
545
206
169
80 | CD
CA
CD
F
CA
SD | 0948
0950
0949
0949
0950
0945 | | 36 | I 0345-
≶0616/2 | g0410-
0410,8/3
G0415/2
G0416.5-
0417.5/2
b0419/2 | *0423-
0431/2 | | S | | | | | | | | 9500
2000
1000 | CD
CD | 0412
0410
0408 | 132. This is a very great solar eventon August 31st at 1257 UT., which occurred in a very remarkable plage. Region 4124 is an extremely large, very bright, and tremendously active plage which consists mainly of the merging of two plages from the previous rotation - plage 4083 at N23, and plage 4084 at N12. There are two complex Ay spots contained within the plage The Ayspot No. 12580 is one of the largest spots of the year - area equal to 1700 millionths of the hemisphere (Mt. Wilson data), and is a return of the spot No. 12516 in region 4083. This latter region was responsible for seven events in this catalogure - Nos. 112, 113, 114, 115, 117, 118, and 121. Region 4124 is responsible for eleven events - Nos. 132, 133, 134, 135, 136, 137, 140, 141, 142, 143, and 144. The 10 cm. event consists of a very great burst, preceded by a precursor, and followed by a very long-enduring post-burst increase in flux. The strong Type IV radio emission, reported by Pt. Davis as in progress at 1301 UT., was observed over the entire observable frequency range of 580 - 100 Mc. Observations of this event, also made by Michigan, indicate that the Type IV burst began at 1258 UT. Pt. Davis remarks that "the Type IV changes gradully into noise storm activity." At meter wavelengths, the radio event consists of a very gree + burst, for which the second part consists of a la and fall in flux. A stimilar type of event evider occurred at the other single radio frequencies. 134. The plage and spot data for this event are similar given for event No. 132. No 10 cm. observations dynamic spectrum observations, exist at the time large SWF on September 1st at 0204 UT. The sing quency observations indicate that the radio event of a strong burst of relatively-short duration which of simultaneously with the start of the SWF. | | | | GE DAT | | M- | Age in | ldent. | MT.W. | CMP | Mea | n | H | When | Area | MT.W. | |----------------|---------------|--------------|--------|--------------|---------------|-----------|------------------|--------|---------|---------------|------|----|-------|------|-------| | CMP
Gr. Day | Mean
Long, | Mean
Lat. | Int. | Max.
Area | No.
Flares | Rotations | ident. | Туре | Gr. Day | La | | | Seen | | No. | ì | | | | | | | | | | | | | | | | | ļ | | | | | | | | | | | | | | | | | 1 | l | ł | } | 1 | ļ | 2 | | | | | | | Sep
10.5 | t.
5 201 | S 12 | 2.5 | 2,70 | 10 |) 3 | 4099 | dβpl | 1 | Sept.
10.5 | S 14 | 18 | 7-16 | | 1260 | 10.6 | 207 | N12 | 3.5 | 9,00 | 39 | 2 | 4098 and
4100 | * 187L | 1 | 0.8 | N11 | 26 | 3-17 | | 12596 | | | | | | | | | | | | | | | | | | | 17. | 0 115 | ~ NIt | 3 | 4,80 | 0 ′ | 7 5 | 4112 | lapl | 1 | 7.2 | N15 | 15 | 10-23 | | 12613 | 1 | | | | | | | | | | | | | | | | | ļ | pectrum observations irst on September 3rd is reported at meter mber 3rd at 1412 UT. o that given for event of a very large burst, irst increase. In the Type II or Type IV events with the large flare and SWF. the single frequency observations. 143. This is one of the relatively rare great geomagnetic storms for which the 3-hr. Kp value reaches a maximum of 9. Four of the 18 stations indicate a second sudden commencement on 6th at 1122 UT. 144. The plage and spot data for this event are similar to that | \dashv | Type I | | C SPECTRUM | | Ohi | | Time | | | /S DATA | | Ohe | 1 | | Pos | |-------------|---|--|-------------------|----------------------|-------------|----------------------------|----------|------------------|--------------|--------------|--------------|----------|---|--|---| | vent
No. | Time/Max.
Int. | Type III
Time/Int. | Type II Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Туре | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc/s | Туре | Beg
UT | | 38 | I in progress s all day | g1259.2-
1259.7/w
g1300.1/w
g1301.4/w
g1313/w
g1314.9/w | | | М | BC
ABC
BC
B
BC | - | 1310 | 60 | | (250) | N | 9400
2980
1500
600
600
545
545
450
221
178
169
169 | SD
CD
CD
CA
SA
CD
CA
SA
CD
CA | 1255
1257
1246
1258
1303
1309
1258
1255
<1241
1300
1241
1311
1331 | | 40 | C0041-
0042/1
C0043-
0044/1 | G0039-
0040/2 | *0036-
0041/3 | | н | 580-
100 | CD | 0038 | 12 | 0039 | 420 | тк | 9500
2000
1420
1000
600
545
167 | CD
CD
ECD
CD
ECD
CD | < 0039
0028
0036
0034
0037
0038 | | .41 | | | | | | | | | | | | | 9400
1500
600
545
169 | SD
CD
ECD
CD
SA | 1020
1022
1025
1025
1023 | | 142 | I in progress
s all day
C1424-
1428/1
C1455-
1456/3 | g1424-
1425/2
b1437/1-
g1455/3 | | | н | | CD
CD | 1411
1422 | 6
15 | 1427 | | c
c | 9400
1500
600
545
450
169 | SD
SD
CD
CD
CD
SA | 1415
1420
1424
1423
1424 | | 144 | | | | | | | CD | 0812 | 7.5 | 0818 | 800 | OSL | 9500
2000
1500
1000
600
169 | CD
ESD
SD
ECD
CD
SD |
0812
0811
0811
0813
0814 | | 45 | C1628-
1629/1
Ig1632-
1638/3
I (weak) in
s progress
all day | g1628/1+
g1630/1-
b1634/2
b1635/3 | 1632-
1638/3 | | <u>н</u> ,м | 190-
100 | CD
CD | 1627.5
1630.5 | 1.5
2 | | 120
150 | N
N | 167 | CD | < 1634 | | 46 | | b0213/1
b0246/1 | | | S | | | | | | | | 9500
3750
2000 | SD
CD
CD | 022
022
022 | | 47 | l (weak) in
progress
all day | g0141/3
b0142/2 | 0150-
0200,5/2 | | s | | | | | | | | 9500
3750
2000 | SD
SD
CD | 014
014
014 | | 48 | I 0330-
⁹ 0715/2 | b0217-
0219/2
g0220/2
b0221/1
b0239/1
g0302/3 | 0259-
0310/2 | 0305-
0722/3 | s | | CD
CA | 0300
0326 | 25
120 | 0308
0405 | 520
4000 | TK
TK | 9500
3750
2000
1420
1000
600
545
545 | CA
CA
CA
CA
CA
CD
CD | 024
024
024
024
023
021
021 | | 149 | g0220/1
b0223/1
i 0319-
\$0712/1 | ъ0228/2 | | | s | | | | | | | | 9500
3750
1420
1000
600 | CD
CD
CD
CD
CD | 021
021
022
022
022 | | 50 | $\mathbf{I}_{\mathbf{S}}$ in progress | g0709/2
g0711-
0713/2
G0715-
0716/1 | 0712-
0721/2 | | s | | CD | 0709 | 6 | | >1100 | N | 9500
2000
1500
1000
600
545
169 | ECD
CD
CD
CD
CA
CD
CA | 070
070
070
070
070
070
070 | 146. The large flare on September 10th at 0223 UT. occurs in a The large flare on September 10th at 0223 UT, occurs in a very large, very bright, and active plage which contains a complex β_Y spot. The flare seems to be correlated with a solar event which is confined to the higher radio frequencies. Only very minor Type III bursts are reported in the dynamic spectrum, and no distinctive event is reported at meter wavelengths or at the low and intermediate frequencies. The SWF listed here is taken from the unpublished CRPL "Check-list". 147. This Type II burst on September 11th at 0150 UT, is associated with minor flare activity in a region which is situated at the east limb of the sun. The plage (4148) is a return of region 4112, which was described in note No. 124. The \$\triangle\$ psot No. 12563 in region 4112, which is a return of the \$\triangle\$ psot No. 12503 in region 4112, which is a return of the \$\triangle\$ psot No. 12503 in region 4075. In addition to the Type II burst, Sydney also reports a group of unclassified bursts between 0141 and 0146 UT. No distinctive event is reported at meter wavelengths at the time of the Type II burst. At the higher frequencies, the radio event consists of a minor burst of very short duration. The SWF is taken from the unpublished "check-list." | | _ | PLA | GE DAT | `A | | | | | | SUNSPO | T DATA | | | | |--|----------------------------|--------------|--------------------------------|--|--------------------------------|--|---|---|---|--|---|--|--|---| | CMP
Gr. Day | | Mean
Lat. | Ave.
Int. | Max.
Area | No.
Flares | Age in
Rotations | Ident. | MT.W.
Type | CMP
Gr. Day | Mean
Lat. | Н | When
Seen | Area | MT.W.
No. | | | | | | | | | | | | | | | | | | Sept.
07.5 | 240 | S 25 | 3 | 2,600 | 13 | 1 | NEW | dpl | Sept,
06,8 | S 24 | 20 | 4-12 | | 12597 | | 11.5 | 188 | S17 | 2.5 | 3.000 | 44 | 1 | NEW | dβL | 11.4 | S17 | 26 | 8-17 | | 12606 | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | 20.5 | 69~ | N11 | 3.5 | 6,000 | 55 | 2 | 4114 | LBpl.
• dB TL | 20.2
21.3 | N09
N10 | 30
31 | 13-25
20-27 | | 12623
12634 | | | | | | | | | | | | | | | | | | 19 | 89 | N19 | 3.5 | 7.800 | 83 | 5 | 4112 | •dBrl | 19.3 | N23 | 36 | 13-26 | 2200 | 12622 | 20.0 | 75 | S 20 | 2.5 | 3,600 | 15 | 1 | NEW | dBl
dBpL | 19.3
20.0 | S 23
S 22 | 17
14 | 20-25
17-25 | 1400 | 1 2 633
12630 | | | | | | | | | | [| | | | | | | | e spectrum, the | single | | 14th at | 0204 UT. | No distir | active even | is report | ed at meter | which sweeps
wavelengths, i | n an inti | the fre | quencies,
ibout 4 min | from em.
utes, and c | to meter
liminish- | | a burst of
y at all freque | ncies, | 157. | with a | rge SWF on
flare in a lar | ge, brig | ht, and activ | e region b | ocated near 159. | ing in duration The plage and | spot d: | ita for t | his event | are simil: | ir to that | | are similar
t on Septembe
equency range
ons indicate the
urst, for whi | r 13th
580 -
nat the | | exist a
at mete
duration | t limb of the
t the time of
a wavelengt
or occurs si | the SWF
hs, and
multane | . No distine
a large mic
ously at th | tive event
rowave bu
e higher f | servations
is reported
rstof short
requencies. | given for event
at 2249 UT, is
plage (4134), w
limb of the sur
over a frequen | No. 146
associa
thich has
t. The Ty
cy range | i. The Ty
ted with
i now re;
pe Hbur
of 220 - | pe II burst
an average
ached a pos
st was obs
100 Mc. As | on Septen
flare in the
sition near
erved by 1
s in Event | nber 16th
he active
the west
Ft. Davis
No. 159. | | are similar
ctrum observ
SWF on Sept | to that | 158. | given f
at 204
range | age and spo
or event No.
5 UT. was
of 250 - 100
cate that th | 146. Th
observed
Mc. The | e Type II bu
i by Ft, D:
single rac | rst on Sept
avis over :
lio observ; | ember 15th
a frequency
itions seem | the single freevent consists
frequencies, frequencies, frequencies frequencies frequencies from the constant of o | quency
of a more
rom cm. | observat
odest bu:
-to-mete | tions indic
rst which :
r wavelen | ate that t
sweeps the
zths, in an | he radio
ough the
interval | | | | | | | | | | | | | | | | | | Ī | | | FL. | ARE DA | TA | | | - | SHOR | T-WA | VE RAD | IO FAD | EOU T S | | | 10 C | M. EVE | NTS | | | |------------|--------------|----------------|-------------|--------------|----------|-------------|-------------|----------------|------------|------------|--------------|------------|----------------|----------------|--------|------------------|------------|------------------|-----------|-------------| | Event | Gr. | Beg. | End | Max. | | Pos | ition | No, of | | | Beg. | | | No. of
Obs. | Type | Beg. | Dur. | Max.
UT | Peak | McM. | | No. | Day | UT | UT
——— | UT | | | | Obs. | | | UT | Min. | Index | Obs. | | UT | Min. | 01 | Flux | Plage No | | 152 | Sept.:
12 | 1510 | 1638 | 1516 | 2 | N11 | W 18 | 8(6c) | s | 2+ | 1513 | 39 | 5 | 12 | *2 | 1514.3 | 18 | 1515.3 | 850 | *4134 | | 153 | 12 | 2145 | 2222 | 2150 | 1 | S17 | W 76 | 2(2c) | SL | 2- | 2142 | 43 | 5 | 10 | 6
2 | 2145
2200 | 15
3 | 2153.8
2201.8 | 105
20 | 4136 | | 154 | 13 | 0602 | 0707 | 0609
0623 | 1 | S16 | W24 | 5(1c) | SL | 1 | 0603 | 24 | 4 | 3 | *6 | 0622 | 4 | | 618 | *4141 | | 155 | 13 | 1410 | 1508 | 1422 | 1+ | N09 | W32 | 7(5c) | S | 3- | 1416 | 34 | 5 | 9 | 3
2 | 1347.5
1414.5 | 95
13 | 1429
1418 | 24
235 | •4134 | | 156 | 14 | <u>0226</u> | 0303 | 0238 | 2 | N1 1 | W 39 | 3(2c) | * S | 3 | 0204 | 51 | 5 | 5 | СБ | 0227 | 17 |
0237 | 400 | *4134 | | 157 | 15 | 0333 | 0418 | 0337 | 2 | N07 | E69 | 3(1c) | *s | 3 | 0327 | 83 | 5 | 6 | *SD | 0332.5 | 7 | 0334 | 830 | •4152 | | 158 | 15 | 2030 | 2110 | 2042 | 1+ | N11 | W64 | 4(4c) | s | 2- | 2040 | 26 | 5 | 9 | 2 4 | 2040.5
2045.5 | 5
35 | 2041.8 | 365
35 | •4134 | | 159 | 16 | 2242 | 2310 | 2245 | 1 | N11 | W77 | 3(3c) | s | 2- | 2244 | 24 | 5 | 5 | 2
4 | 2243.6
2248.8 | 5
>15 | 2245 | 425
25 | *4134 | | 160 | 18 | *1303
*1425 | 1600 | 1325
1530 | 3 | N23
N20 | | 9(5c)
9(5c) | SI.
SL | 3 -
3 - | 1245
1420 | 190
190 | 5
5 | 10
10 | 3 2 | 1258
1333 | 230
1.5 | 1330
1333.5 | 34
9 | *4151 | | 161 | 18 | *1722
*1815 | <u>2110</u> | 1740
1840 | 3+
3+ | N23
N20 | E08
E03 | 6(6c)
6(6c) | *s
*s | 3+
3+ | 1730
1823 | 150
150 | 5
5 | 10
10 | 3
6 | 1805
1820.5 | 190
40 | -
1824.7 | 92
275 | *4151 | | 162 | 19 | *0350 | 0555 | 0410 | 3 | N23 | E02 | 5(2c) | *SL | 3 | 0359 | 54 | 5 | 4 | *CD | 0401 | 10 | 0406 | 1410 | +415: | | 163
164 | 20
20 | 0529 | 0552 | 0533 | 1 | N23 | W13 | ı | s | 1 | 0532 | 10 | 1 | 1 | *CD | 0537 | 11 | 0539 | 509 | 415
*415 | 1 1 152. The plage and spot data for this event are similar to that given for event No. 146. The large 10 cm, burst on September 12th at 1514 UT, is accompanied by Type II and Type IV bursts which covered the entire observable frequency range of 580 - 100 Mc, At meter wavelengths, the radio event consists of a great burst which is followed by a great rise and fall in flux. The other single frequency reports indicate that a similar kind of major + burst occurred, At the intermediate frequencies, the "second part" consisted of a noise storm. 153. These Type II and Type IV dynamic spectrum events on September 12th at 2150 UT, are associated with flare activity in a region near the west limb of the sun. Plage 4136 is a new region - both the plage and its related βspot appeared on the disk on September 4, when the region was in the east. The Type II burst was reported by both Ft. Davis and Michigan, but only Michigan reports the Type IV emission, on their Chand only, and degenerating into weak noise storm activity. At meter wavelengths and at other single radio frequencies, the radio event consists of a minor burst of short duration. 154a. This very great geomagnetic storm is one of the few storms for which the 3-br. Kp value reaches a maximum of 9. 154b. This large 10 cm. burst on September 13th at 0622 UT. is not associated with any other very major solar activity. The related flare occurred in an active plage which developed on the disk as a new plage of September 6, and in which a spot appeared on September 8. In the dyna response evidently was a weak infrequency observations indicate t duration occurred almost simultaneous 155. The plage and spot data for this editive for event No. 146. The Type IV et at 1419 UT, was observed over the 400 Mc. The single frequency observation event consists of a major "second part" is a rise and fall in fl 156. The plage ans spot data for this egiven for event No. 146. No dynamic were being made at the time of the la | RADIO | DATA | | | | PO | LAK CAF | ABSOF | RPTION | | | | | GEOM | IAGNETI | C STORM | s | | |---|--|---|--|--|---|--|------------------------------------|--------------------------------------|--|--|--|--|---|-------------------------------------|---------|------------------|-------------| | Dur.
Min. | Max.
UT | Peak Obs
Flux | | | Onset
UT | Rise to
Peak | Dur. | Peak
Int. | Obs. | | Gr.
Day | Beg.
UT | | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | 41
45
142
4
153
1.5
60
435
62
100
18
44
100 | 1302
1329
1317
1317 | (333) HHI 429 N (304) HHI <150 UC 102 UC 170 N 35 N 360 NBS 700 AOP (400) CAV > 545 UC (1300) CAV | s | Sept.
22 | 1700 | | 46 | 58 | B,L,H | | | | | | | | | | >10
22
14
8
10
1.5
1.8 | 0044.3
0039
0040
0041
0037 | 1238 TK (57) NAG 175 SYD 534 NAG 106 SYD >300 N(H) >4500 NBS | | | | | | | | | | | | | | | | | 51
28
3
2
0.6 | 1026
1026
1027 | (>500) HHI
(274) HHI
103 MOS
400 N
>72 UC | | | | | | | | | | | | | | | | | 82
80
19
9
> 7
8 | 1423
1425
1428 | (>515) HHI
(509) HHI
198 UC
240 N
400 NBS
33 UC | | | | | | | | | Sept. | 1300 | | | | | | | 2.8
4.5
43
9
9 | 0812.5
0813
0812
0814 | >1355 TK
(800) NAG
(571) HHI
(805) NAG
60 UC
>75 UC | - 1 | | | • | | | | | 04 | 1300 | 2.5d | Sc | s | 18 | 9 | | 2.3 | 1635 | 980 NBS | | | | | | | | | | | | | | | | | 5
35
35 | 0228
0228
0228 | 481 TK
(36) NAG
(15) NAG | | | | | | | | | | | | | | | | | 1
1
1.5 | 0141.5
0141.4
0141.4 | 453 TK
(18) NAG
20 NAG | | | | | | | | | | | | | | | | | 130
90
70
66
70
124
12.5
53 | 0305
0304
0304
0304
0320 | 584 TK (373) NAG (564) NAG 604 SYD (8200) NAG 10000 SYD 180 >30000 N(H) | | | | | | | | | | | | | | | | | 5
2.5
0.6
2
0.7 | 0221
0221.4
0221.4
0221.8 | 526 TK
(102) NAG
127 SYD
(27) NAG
92 SYD | , | | | | | | / | | | | | | | | | | 6
6
10
7
3
11
2 | 0709
0709
0709
0709 | 697 TK (88) NAG (191) HHI (79) NAG 180 UC >300 N >120 >120 UC | ŀ | | | | | | | | | | | | | | | | : 0244 L
lar to the
lar to the
lar to the
first first
151, it
ents liss
UT do
rently a
ydney a
. At me-
rge ma
val of ve
frequen | hat ine 52, 149, ted not re- lso ter jor ery | events indicate a
cntire range of fi
No flare observe
large 10 cm, bu
fore plage and s
not available. To
duration, and is
burst in the dy
short duration it
by the single ra-
event is reporte- | t large rise an equencies. ations were bei rst on Septempot data in ass he large 10 c associated whamic spectrum proughout the radio frequency of | ng mader 12th octation m. bursith only m, and sange of fobservat | e at the at 0220 with the string a mode with buildings. N | e time of
UT., the
his event
of very sh
dest Type
ersts of v
cies cove | the re- are ort III ery red ive 15 | 50. The give at (larg sim rang ser' | L,H In the unpublished plage and spot on for event No. 1 V712 UT. is asso te radio burst o ultaneously at a ge of frequencie vations. S PCA event is: s not appear in B: | data for thi 46. The Type ciated with, f short dur: 11 waveleng s covere | s event
Eliburst
but predation wh
this, thr | are sim
on Septe
ceded in
ich occi
oughout
e single | ember l
time by
ars alm
the end
radio | .2th
y, a
lost
tire
ob- | | | | 2. VIII-7R 3 | - | | DYNAMIC | SPECTRUM | DATA | | | | | | SDATA | | Obe | Free | Tuna | Beg. | |-------------|---|---|--------------------------|----------------------|-------------|----------------|------------|----------------|--------------|----------------|--------------|----------|--|---|--| | vent
No. | Type I
Time/Max.
Int. | Type III Time/Int. | Type II
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Туре | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc.s | Туре | UT | | 152 | I 1515-
\$2400/3 | G1515-
1516/3
g1518-
1521/3 | *1516
1528/3+ | * 1515-
2025/3 | н,м | 580-
100 | CD
CD | 1515
1522 | 7
125 | 1519
1528 | >800
10 | C,N | 9400
1500
600
600
545
450
169 | CD
CD
ECA
-
CD
ECD
CA | 1514
1515
1514
1516
1515
1515
1514
1517 | | 153 | 1 2202-
82345/1- | g2147-
2149/1
g2151/1 | *2150-
2153/3 | * 2153-
2203/1- | н, <u>м</u> | 300-
100 | CD | 2151 | 2 | | >150 | N | 9500
2000
1420
1000
600
545
167 | CD
SD
CD
CD
CD
CD | 2146
< 2154
2154
< 2154
2149
2148
2153 | | 154 | I 0615-
\$0634/1 | | | | s | | CA | 0610 | <u>50</u> | 0700 | 570 | тк | 9500
2000
1420
1000
600
545
169
169 | ECD
SD
ECD
CD
CD
ECA | 0623
0622
0623
0622
0623
0622
0624 | | 155 | C1417-
1419/3 | g1409-
1410/1-
g1415-
1417/1
g1417-
1419/3 | | * 1419-
1606/3 | н, <u>м</u> | 580-
400 | CD | 1417.5 | 1.5 | 1418 | 225 | OSL | 9400
1500
600
600
545
545
169
169 | CD
CD
ECD
-
CD
-
ECA |
1415
1415
1416
1414
1416
1417
1420 | | 156 | | | | | | | | | | | | | 9500
2000
1000
545 | CD
CD
CD | 022
022
022
022 | | 157 | : | | | | | | | | | | | | 9500
2000 | ECD
SD | 033
033 | | 158 | I (weak) in
progress
all day | g2039-
2040/1
g2041/3 | *2045 <i>-</i>
2049/3 | | н,м | 250-
100 | CD | 2043 | 2 | | >150 | N | 450
167 | ECD | 204
204 | | 159 | I in progress
all day | g2244-
2245/1
b2253/1 | *2249-
2254/3 | | н,м | 220-
100 | CD | 2245 | 1.5 | | >180 | N(H) | 9500
2000
1420
1000
600
545
545 | ECD
ESD
SD
ESD
CD
CD | 224
224
224
224
224
224
224 | | 160 | C<1315-
1521, 1
I <1315-
s 1711/2
Also I (weak)
in progress
all day | | | | <u>н</u> ,м | | ESD
ECD | 1333
1437 | 0.6
60 | | >500 | N,C
C | 600
450 | CA
CA | 14
<13 | | 161 | I (weak) in
s in progress | g1741/3
G1835/1 | | * 1810-
>0028/3 | Ħ,M | 580-
100 | CD | 1740
1808 | 0.8
>293 | 1827 | 356 | c
c | 545
450
450
450
167 | CD
- | 18
18
19
19 | | 162 | I (weak) in
progress
all day
g0411/2
g0413/3
g0450/2
1 0500-
s0702/3 | III. ail day
III. 80546-
80634/3 | | * 0427-
0730/3 | S | | CA
CD | 0308
0411.5 | 150
1.5 | 0510
0411.8 | 580
1420 | TK
TK | 9500
2000
1420
1000
600
545 | CD
F
CD | 03
04
04
04
04 | | 163
164 | I in progress
all day | III all day III 50544- \$0624/2 | | | s | | | | | | | | 9500
3750
2000
169 | SD
CD | 05
05
05 | 160. This major flare on September 18th at 1300 UT, is one of those rare great optical flares which shows a "double aspect" as it spreads within the plage. This "doubling" appears also in the SWF and in the radio event at meter wavelengths. The flare occurred in a large, very bright, and very active plage which was in its fifth rotation, and which is responsible for five events in this catalogue - Nos. 160, 161, 162, 164, and 166. This active region (4151) is a return of the plage described in note No. 124. The complex Bysoot No. 12622 is the largest spot observed during the year area equal to 2200 millionths of the hemisphere (Mt. Wilson data). The only effect of the flare at radio frequencies seems to be in the form of noise and a rise base level, as shown most clearly in the dynamic spectrum observations. The single frequency observations (at both cm. and meter wave- lengths) indicate that the radio event consists of a very minor burst (which seems to be associated with the first phase of the flare) and a rise and fall in flux, with noise, (which seems to be related to the later aspect of the flare). 161. The unusual plage described above in hote No. 160 experiences another great flare only a few hours after the preceding event. This second great flare on September 18th at 1722 UT, also has a "double" aspect as the flare spreads within the plage. The plage and spot data are similar to that given for event No. 160. This flare also has a similar response in the SWF, and at radio frequencies, but to a much greater degree. Instead of only continuum emission, as in event No. 160. Pt. Davis now reports strong Type IV emission, observed over a frequency range of 580 - 100 Mc. The 10 cm, event consists of a large burst long-enduring rise and fall in flux, at meter event is a minor burst (associated with the flare), followed by a very large and long base level (associated with the later aspect.) 162. This is another major optical and radio eve 19th at 0350 UT., in the same plage which for events No. 160 and 161. This unusual rienced three of these great events within a pe The single frequency observations indicat event consists of a microwave burst, of 10 cm., which progresses slowly through from high to low frequencies, in a period of a with decreasing intensity and duration. 2. VIII - 8R | | | PLA | GE DAT | ra | | | | | | SUNSPO | DATA | | | | |----------------|---------------|--------------|--------------|--------------|---------------|--------------------|--------|----------------------------|----------------------|----------------------|----------------------------|-------------------------|------|----------------------------------| | CMP
Gr. Day | Mean
Long. | Mean
Lat. | Ave.
Int. | Max.
Area | No.
Flares | Age in
Rotation | Ident. | MT.W.
Type | CMP
Gr. Day | Mean
Lat. | н | When
Seen | Area | MT.W
No. | Oct.
01.0 | 290° | N17 | 3.5 | 6,000 | 19 | 2 | 4145 | IBPL | Sept
30.8 | N16 | 30 | 23-6 | | 12648 | Sept.
28.0 | | N20 | 3 | 19,000 | 63 | 4,3 | 4124 | *lbrl | 27.2
27.4 | N14
N19 | 25
30 | 20-2
20-2
22-2 | | 12635
12636 | | | | | | | | | | Lapl
dppd
lbd
dbL | 27.8
28.7
28.9 | N24
N11
N25 | 25
30
26
20
13 | 22-2
22-2
25-4 | | 12636
12642
12644
12652 | 1 | | | | | | | | | | Oct.
07.5 | 204° | N14 | 2.5 | 7,500 | 30 | 3 | 4134 | dBL | Oct
7.9 | N14 | 16 | 6-12 | | 12676 | | | | | | | | ţ. | | | | | | | | | | 08 | 198° | S 40 | 3 | 5,200 | 17 | 1 | NEW | dβfd | 8.2 | S 40 | 11 | 1-12 | | 12669 | | | | | | | | | | | | | | | | | | 14.5 | 112° | N23 | 2 | 2,500 | 14 | 6 | 4148 | dßpl | 14.5 | | 10 | 12-19 | | 1269 | | 17.5 | 59° | N10 | 2.5 | 8,500 | 26 | 3 | 4152 | d₿d | 16.4 | N09 | 13 | 10-18 | | 12687 | | | | | | | | | | | | | | | | | | 11.0 | 158° | N18 | 3.5 | 5,000 | 14 | 3 . | 4132 | lßpl | 11,1 | N19 | 28 | 4-16 | | 12675 | | 17.5 | 73° | S 25 | 3.5 | 18,000 | 92 | 2 | 4155 | e eff
Lal
LBPd | 18,4 | S 25
S 29
S 23 | 29
17
15 | 10-24
12-24
12-19 | 1500 | 12689
12694
12696 | | | | | | | | | | | 23.0 | | | 3 - 4 | | | | | | | | | | | | | | | | | | | ing storm is still in and no events at any of the single radio frequencies. 24th at 0212 UT, is t the east limb of the e dynamic spectrum very real event took nd no event at meter of the Type II burst, CRPL "check-list." t are similar to that st on September 24th it optical flare at the No other related ac-VF, no 10 cm. event, 173. This major flare on September 26th at 1907 UT., occurred in an extremely large, bright, and very active plage. This region (4159) is a return of the lactive region 4124, described in note No. 132, which was responsible for eleven major events in this catalogue during its disk passage of which two (and possibly three) were PCA events. Region 4159 is responsible for 5 events in this catalogue - Nos. 173, 174, 175, 176, and 177 - one of which is a PCA event. The αp spot No. 12636 is a return of the $\beta \gamma$ spot No. 12581 in region 4124. The βp spot No. 12642 is located in the same position, but is not a return, of the $\beta \gamma$ spot No. 12580 in region 4124. The 10 cm. event donsits of a modest but lengthy burst superposed on a very long-enduring rise and fall in flux, which began about 50 minutes earlier. The strong Type IV radio emission, which started at 1927 UT, at the same time as the 10 cm, burst, was observed by Ft. Davis over the entire observable frequency range of 580 - 100 Mc. Ft. Davis remarks that the Type IV burst "changes gradually into noise storm activity." At meter wavelengths, the radio event consists of a very great complex burst, followed by a great rise in base level. 176. The plage and spot data for this event are similar to that given for event No. 173. The major flare on September 30th at 1657 UT., and large SWF, are not associated with any other major activity. Only a small Type III burst is reported in the dynamic spectrum, and a minor burst at meter wavelengths. The 10 cm, event consists of several modest bursts superposed on a rise and fall in flux. No events at any other single radio frequencies are reported at the time of the large flare. | | | | FI | ARE D | ATE | | | | SHO | RT-W | AVE RA | DIO FA | DECUT | S | | 10 CI | M. EVEN | TS | | | |--------------|-------------|---------------|-------------|------------|------|-------|-------------|----------------|------|------|------------|--------------|-------------------------|----------------|------------------|------------------------|--------------|-------------------------|----------------|------------------| | Event
No. | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Imp. | Posit | ion | No. of
Obs. | Type | Imp. | Beg.
UT | Dur.
Min. | Wide
Spread
Index | No. of
Obs. | Type | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | McM.
Plage No | | 165 | Sept.
20 | 2117 | 2222 | 2123 | 2 | N07 | W14 | 4(4c) | s | 1+ | 2120 | 21 | 5 | 10 | 6
4 | 2119
2127 | 8
>80 | 2120.5 | 185
18 | *4152 | | 166 | 21 | 0415 | 0456 | 0422 | 2 | N23 | w23 | 4(1c) | *SL | 3 | 0410 | 32 | 5 | 4 | CD | 0403 | 25 | 0406 | 420 | *4151 | | 167 | 21 | | | | | | | | | | | | | | İ | | | | | | | 168 | 21 | * <u>1330</u> | <u>1510</u> | 1335 | 3 | N10 | w 06 | 11(4c) | sL | 3- | 1330 | 60 | 5 | 9 | *6
4 | 1330
1344.5 | 14.5
25 | 1337 | 785
15 | *4152 | | 169 | 21 | 170 | 22 | | | | | | | | | | 0015 | 140 | , | , | | | | | | 4162 | | 171 | 24 | 0224 | 0307 | 0227 | 1- | N15 | E91 | 1(1c) | SL | 2+ | 0217 | 143 | 1 | 1 | | | | | | | | 172 | 24 | <u>0507</u> | 0522 | 0513 | 1+ | N15 | E90 | 2(2c) | | | | | | | | | | | | 4162 | | 173 | 26 | *1907 | 2202 | 1952 | 3 | N22 | E15 | 6(5c) | s | 2+ | 1925 | 100 | 5 | 5 | 3
6 | 1836
1927. | >240
8 60 | 1938. | 57
5 67 | *4159 | | 174 | 26 | 175 | 29 | | | | | | | - (4) | İ | | | 40 | | | | 1658 | 70 |
1710 | 30 | *4159 | | 176 | 30
Oct. | *1657 | 1750 | 1706 | 3 | N25 | W37 | 5(4c) | *8 | 3 | 1700 | 40 | 5 | 9 | 3
1
6
2 | 1658
1659.
1705. | 1
5 6 | 1658.
1701.
1706. | 4 18
5 77 | | | 177 | 03 | | | | | | | | | _ | | | | | 1 | 0000 | | 0234 | 800 | *4172 | | 178 | 08 | 0231 | 0258 | 0240 | 2 | N17 | W 05 | 2(1c) | SL | 2- | 0230 | 24 | 1 5 | 3 | *ESD | 0233. | 5 7.5 | 0234 | 800 | | | 179 | 09 | 0340 | 0438 | 0355 | 2 | S 38 | W14 | 3(1c) | SL | . 1+ | 0340 | 44 | 1 5 | 4 | CD | 0342 | 27 | 0347 | 382 | 4173 | | 180 | 10 | 1630 | 1731 | 1648 | 1+ | N25 | E38 | 2(20) | *si | . 3 | 1607 | 123 | 3 5 | 8 | 2 | 1608 | | 5 1609 | | 418: | | 181 | 13 | 0534 | 0641 | 0539 | | | E40 | 3(1c) | s | 1 | 0541 | 25 | 5 1 | 1 | 1
*CD | 1618
0535 | | | .2 7
.5 800 | 4186 | | 182 | 14 | | | | | | | | | | | | | | 1 | | | | | | | 183 | 15 | | | | | | | | s | 1+ | 2150 | 1: | 2 5 | 8 | *2 | 2150 | >10 | 2152 | 2.7 1000 | | | 134 | 16 | 0144 | 0155 | | 1 | N22 | W 56 | 1 | s | 2+ | 0150 | | | | •ECI | 0142 | 39 | 0142 | 523 | 417 | | 185 | 16 | *0152 | 0202 | 0152 | 3 | S 25 | E21 | ì | s | 2+ | 0150 | 2 | 0 5 | 7 | | | | | | *418 | | 186 | 18 | 0816 | 1022 | 0820 | 1 | S 24 | W04 | 7(3c) | *s | 3 | 0820 | 2 | 0 1 | 1 | *2 | 0818 | 12 | | 544 | +418 | | | The place | | | | | | | | | | | | | | | | | | | <u> </u> | 165. The plage and spot data for this event are similar to that given for event No. 157. The Type II burst on September 20th at 2121 UT, was observed by Ft. Davis over a frequency range of 330 - 100 Mc. The single radio observations indicate that the radio event, at meter wavelengths and the intermediate frequencies, consists of a major burst of short duration. 166. The plage and spot data for this event are similar to that given for event No. 160. No dynamic spectrum observations exist at the time of large SWF on September 21st at 0410 UT. Only a minor burst is reported at meter wavelengths, 167. Seven of these 17 stations rate this storm as a severe one, Four stations continue the storm for three more days, running it through the period of the next storm (event No. 170). 168. The plage and spot data for this event are similar to that given for event No. 157. The major flare on September 21st at 1330 UT, began earlier as a minor brightening of importance 1-, at 1227 UT. The large 10 cm, event consists of a very large burst followed by a modest post-burst increase. The brief interval of Type IV radio emission (15 minutes) was observed by Fort Davis over a frequency range of 300 - 100 Mc. At meter wavelengths, the radio event consists of a very great burst, superposed on a rise in flux, which began earlier, at 1230 UT., as the onset of a noise storm with a rise in base level. 170. This storm begins while the preprogress, but is diminishing. 171. The Type II burst on Septemb associated with a minor optical flar sun. However, the large SWF, and response at 40 - 240 Mc, indicate the place on the sun. No. 10 cm, even wavelengths, are reported at the to The SWF is taken from the unpublis 172. The plage and spot data for this given for event No. 171. The Type II at 0504 UT. is associated with a m east limb, similar to event No. 1 tivity is reported - there is no known. | R RADI | O DATA | | | | POI | AR CAP AE | SORPTIO | N | | | | | GEOMA | GNETIC | STORMS | | | |---|--|--|--|-----------------|-------------|-----------------|---------|--------------|-------------|---------|-------------|------------|---------|----------|--------|------------------|------------| | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Gr.
Day | Onset
UT | Rise to
Peak | Dur. | Peak
Int. | Obs, | | Gr.
Day | Beg.
UT | Dur. | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | 11
28.5
2
164
220
315
2.5
63 | 1516
1516
1528 | (1150)
(627)
> 210
>> 430
> 5000
> 7500
> 270
> 270 | HHI
HHI
UC
N
NBS
UC | | | | | | | :
: | | | | | | | | | 10
>7
1.5
>6
7.5
3
142 | 2154
2154
2154
2154
2150
2321 | 860
(86)
278
(195)
178
150
320 | TK
NAG
SYD
NAG
SYD
N
NBS | | | | | | | : | | | | | | | | | 2.8
3
2.5
3
1.8
2.5
1.5
3 | 0623.5
0622.4
0623
0622.6
0624 | 813
(290)
224
209
191
450
110
120 | TK
NAG
SYD
NAG
SYD
N | | | | | | | | Sept.
13 | 0047 | 2.2d | Sc | S | 18 | 9 | | 35
40
3
117
4
110
3
8
36 | 1418
1420 | (542)
(266)
150)
> 510
240;
> 5500
> 120;
72
23 | HHI
HHI
UC
N | | | | | | | | | | | | | | ! | | >30
17
14
1.5 | 0228
0228
0227 | 706
(28)
14
45 | TK
NAG
NAG
N | | | | | | | | | | | | | | | | 5.8
5 | 0333
0335 | 1066
(111) | TK
NAG | | | | | | | 1 | | | | | | | | | 15
2.5 | 2042
2045.9 | 800
3000 | NBS
NBS | | | | | | | | | | | | | | | | 17
3
10
6
>5
1 | 2244.5
2245
2245
2246
2246 | 1030
(320)
198
(145)
86
>300
30 | TK
NAG
SYD
NAG
SYD
N | | | | | | | | | | | | | | : | | 32
258 | 1440 | 45
140 | UC
NBS | | | | | | | | | | | | | | : | | 50
63
20
•315
•390 | 1823
1915
1947
2100 | 980
2000
220
2000 | N
NBS
NBS | | | | | | | | | | | | | | | | > 50
8
7
11
2
4 | 0405
0406
0406
0409
0408 | >1350
(254)
193
305
131
90 | TK
NAG
SYD
NAG
SYD
N | | | | | | | | | | | | | | | | 9
6
8
300 | 0539
0539
0539 | 643
(200)
(23) | TK
NAG
NAG
UC | this burst is s | unernosed | On : lenothy | rise | 0547 | 0554, and | 0558 UT | No disti | nctive s | vent is | reported | | | | | velength | ns the | and fall | in flux. | | _po-poed | | | | ter wavelen | | | | | | | | | perposed on a velengths the first phase of turing rise in of the flare). on September s responsible on has exper-1 of 24 hours, hat the radio at intensity at frequencies, t 10 minutes, meter wave163. This region is similar to the plage described in note No. 65. The plage is new, and appeared on the disk when the region was about 3 days east of the central meridian. The \(\tilde{P}\) spot No. 12633 is one of the largest spots of the year - area equal to 1400 millionths of the hemisphere (Mt. Wilson data). 164. The plage and spot data for this event are similar to that given for event No. 160. The large 10 cm. burst on Sept. 20th at 0537 UT, is not associated with any other major solar activity. In the dynamic spectrum, in addition to the Type III noise storm, Sydney also reports unclassified bursts at 0547, 0554, and 0558 UT. No distinctive event is reported at meter wavelengths at the time of 10 cm. burst. The SWF is taken from the unpublished CRPL "check-list." | | | DYNAM | IC SPECTRUM | DATA | | | | | 200 M | C/S DATA | | | | | (| |------------|--|--|--------------------|----------------------|-------------|----------------|-----------------|----------------------|--------------------|----------------------------|--------------|-------------|---|---|--| | No. | Type I
Time/Max.
Int. | Type III
Time/Int. | TimeI
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Туре | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc/s | Type | Beg.
UT | | 165 | C2119-
2125/1
I in progress
all day | g2119-
2120/1 | *2121-
2123/3 | | Ħ,M | 330-
100 | CD | 2121.5 | 3.5 | | >180 | N(H) | 9500
545
450
167 | ECD
CD
ECD
FD | 2119
2121
2119
2120 | | 166 | | | | | | | СБ | 0446 | 1.5 | | 90 | N(H) | 9500
2000 | CA
SD | 0405
0403 | | 167
168 | I (weak) in
progress all
day
I 1315-
^S 1746/2 | G1330-
1339/3
g1406/3
g1410/3
g1415/3
G1424/1 | | 1330-
1345/3 | <u>н</u> ,м | 300-
100 | E,M
CA
CA | 1230
1306
1308 | 270
1.5
1410 | off-scale
1312-
1321 | | c
c
c | 9400
1500
600
545
450
450
169 | CD
CD
CD
CD
-
CD | 1330
1331
1334
1331
1350
1220 | | 169
170 | | | | | | | | | | | | | | ECD | 1330 | | 171 | I in progress
all day | b0201/2
G0201-
0204/1
b0204/2
g0204-
0206/1 | *0212-
0226/2 | | S | | | | | | | | 9500
9500 | ESD
SD | 0204
0238 | | 172 | I in progress
all day | g0454/1
g0521/1 | *0504-
0507/1 | | s | | | | | | | | | | | | 173 | I 1932-
\$2400/3 | g1927/2 | | • 1927-
>2015/3 | Ħ,M | 580-
100 | CD | 1925
1947 | 40
>60 | 1940
2010 | >384 | c
c | 450
167
167 | CA
ECD
CA | 191:
192:
192: | | 174
175 | | | | | | | | | | | | | | | | | 176 | | g1658/1 | | | <u>H</u> ,M | | CD | 1657 | 0.8 | | | с | | | | | 177 | | | | | | | | | | | | | | | | | 178 | | g0233/2 | | | S | | ECD | 0232.7 | 2.5 | 0233.8 | 1600 | тк | 9500
2000
1420
1000
600
545 | ECD
SD
SD
CD
SD
SD
SD | 023
023
023
023
023
023 | | 179 | 1 0337-
^S 0400/2 | III _S 0337-
0427/1 | *0402-
0422/3 | | s | | | | | | | | 9500
2000
1420
1000
600
545 | CD
SD
CD
SO
CD | 034
034
034
034
034 | | 180
181 | I in progress
all day | | | | | | | | | | | | 9500
2000 | CD
CD | 053
053 | | 182
183 | I in progress
from
1844 UT | G2152-
2153/3
g2153-
2155/1 | | | <u>н</u> ,м | | | | | | | | 9500
1420
600
450 | | 215
215
215
215 | | 184 | | ,
- | | | | | | | | | | | 130 | 200 | 213 | | 185 | | | | | | | | | | | | | 9500
2000
1000 | ECD
CD
F | 015
015
015 | | 186 | | | | | | | | | | | | | 9400
1500
600
545 | SD
CD
ECD
CD | 081
081
081 | - 177. This minor storm was reported by only two stations. However, the change in the 3-hour Kp's is quite definite. - 178. This strong 10 cm. burst on October 8th at 0233 UT. is associated with flare activity in a large and fairly active plage (4172), which is the return of the very active region (4134) described in notes No. 146 and 148. This region (4172) is not important as a source of great activity, except for this single microwave burst. In the dynamic spectrum, in addition to the Type III burst, Sydney also reports an unclassified burst at 0232.5 0236 UT. - 179. The Type II burst on October 9th at 0402 UT, is associated with flare activity in a new plage located near the center of the solar disk. No distinctive event is reported at meter wavelengths, at the time of the Type II burst. - 180. No outstanding events in the dynamic spectrum are reported at the time of the large SWF on October 10th at 1607 UT. The 10 cm, event consists of two small bursts, and at meter wavelengths no distinctive event is reported, although a noise storm is in progress. No events are reported at any other single radio frequencies. - 181. This strong microwave burst on October 13th at 0536 UT, is associated with an important optical flare, but the related activity and radio emission are not very great. No dynamic spectrum observations exist at the time of the 10 cm. burst. At meter wavelengths, no distinctive event is reported. - 182. Five of the 12 stations which report this storm call it a sudden commencement storm. Four of the stations start the storm earlier, on 13th at 20xx UT. - 183. No flare observations exist at the time of the burst on October 15th at 2150 UT., therefore pl data for this event are not available. The be incomplete, since it was recorded during the lations. No distinctive event is reported at meter at the time of the 10 cm, burst. - 184. This large 10 cm. burst on October 16th at 0.142 to be associated with minor flare activity in a the west limb of the sun. There is a very little activity. The SWF given here is in all protapplicable to the next event (No. 185). No dynan event is reported at the time of the large 10 cr no distinctive events are reported at any of frequencies. | | | PLA | GE DATA | · | | | | | | SU | NSPOT | DATA | | | | |----------------------------------|------------------|--------------|-----------------------|-----------------------------|----------------------|---------------------------|---|----------------|--|-----------------|----------------------|---------------------|-------------------------|---------------------------|-----------------| | CMP
Gr. Day | Mean
Long. | Mean
Lat. | Ave.
Int. | Max.
Area | No.
Flares | Age in
Rotations | Ident. | MT.W.
Type | CMP
Gr. Day | | ean
at. | н | When
Seen | Area | MT.W.
No. | | | | | | _ | ł | Oct. | 400 | | i 2 | 2,600 | 8 | 4 | 4158 | d p L | | Oct.
22.2 | NII 4 | 14 | 22-27 | | 1271 | | 22.0 | 13° | NI | . 2 | 2,000 | · | • | 4155 | υp~ | | | ,,,,, | ., | 26-21 | | 1211 | | | | | | | | | | | | | | | | | | | 22.0 | 13° | N20 | 5 2 | 1,400 | 11 | 1 | NEW | døl | | 21.8 | N25 | 7 | 22-27 | | 1271 | | 22.0 | 1.5 | 1121 | , . | 1,400 | ••• | • | NE.W | op. | | 21.0 | | · | 46-61 | | 12/1 | | | | | | | | | | | | | | | | | | | 25.5 | 327 | N2 | 0 3 | 12,500 | 45 | 5 | 4159 | lßl
Ißpl | | 24.8
25.7 | N13
N22 | 13
17 | 18-30
19-30 | | 1270
1271 | | | | | | | | | | lppl | | 25.7 | N13 | 16 | 22-30 | | 1271 | | 27.5 | 301 | ° N1 | 8 3 | 6,000 | 13 | 3 | 4162 | *dBpl | | 27.5 | N21 | 22 | 26-1 | 1400 | 1273 | | | | | | | | | } | Lpp
Lpp | | 27.9
28.7 | N14
N12 | 14
11 | 22-30
22-1 | | 1271
1272 | h at 163 | 7 110 | | over the | entire observ | vable fre | dienov *··· | ge of 580 - 100 M | p 1 | irst was ob | Norvec | hv F* | Dant: | over a f | requesta: | rango | | imilar t
18 a ''do | o that
uble'' | | At meter
and comp | wavelength
dex major | s the rac
burst. | dio event c
The single | onsists of a larg
radio observation
relengths, follower | ξe of
us wa | 1190 - 100
avelengths,
eported at (| Mc. N
and or | o distin
Ily mine | ctive ev
or burs | ent is rep
ts of sho | oorted at i
rt duratio | meter
in are | | er part
y great '
long-end | burst,
luring | | by a ''se
of noise | cond part''
at the lower | which co
frequenc | nsists most | ly of a long peric
irregular intensi | od qu | eported at the
lencies. The
check-lists. | e SWI | is tak | en fror | n the unp | ublished (| CRPL | | oincide:
le large
re. The | burst | 192. | No flare | ms" (NERA) observation | s were i | n progress | at the time of the | ne g | he plage and
iven for eve
t 1304 UT. is | nt No. | 185. T | he Type | · II burst o | on Octobe: | r 21st | over a frequency Type IV emission No flare observations were in progress at the time of the Type II burst on October 20th at 2149 UT., therefore plage and spot data for this event are not available. The Type II at 1304 UT. is associated with minor flare activity. No SWF is reported at the time of the Type II burst. Only minor | | | | FI | ARE D | ATA | | | | SHC | RT-W | AVE RA | | | | | 10 CI | A. EVEN | TS | | <u> </u> | |--------------|------------|--------------------------------|--------------|--------------|----------|--------------|-------------|----------------|-----|------|------------|-----|-------------------------|--------|---------|----------------|--------------|------------|--------------|------------------| | Event
No. | Gr.
Day | Beg.
UT | End
UT | Max.
UT | | Posi | tion | No. of
Obs. | F | | Beg.
UT | | Wide
Spread
Index | No. of | Type | | Dur.
Min. | Max.
UT | Peak
Flux | McM.
Plage No | | 187 | Oct.
19 | 0406 | 0415 | 0410 | 1 | S 28 | w20 | 1 | s | 1 | 0406 | 24 | 3 | 2 | *ESD | 0405 | 7 | 0406 | 700 | *4189 | 188 | 20 | | | | | | | | s | 2+ | 0242 | 38 | 5 | 4 | *CA | 0239 | 40 | 0254 | 1100 | 189 | 20 | 0938 | 1120 | 0942 | 2 | S 25 | W32 | 11(4c) | *s | 3 | 0945 | 15 | 4 | 3 | CD | 0938 | 7 | 0941 | - | *4189 | | 190 | 20 | * <u>1637</u>
* <u>1644</u> | 1644
1804 | 1642
1647 | 3+
3+ | S 26
S 26 | W45
W35 | 2(2c)
2(2c) | *s | 3+ | 1639 | 156 | 5 | 12 | 9
*6 | 1636
1644 | 8
51 | 1650.8 | 12
4000 | *4189 | | | | | | | | | | | : | | | | | | 4 | 1735 | 195 | | 68 | 191 | 20 | 192 | 20 | | | | | | | | s | 1 | 2136 | 12 | 1 | 1 | 2 | 2145 | >5 | 2145.8 | 230 | | | 193 | 21 | 1301 | 1314 | 1302 | 1 | S 28 | w 50 | 1(1c) | | | | | | | 2
4 | 1301
1306.5 | 5.5
20 | 1301.5 | 155
8 | *4189 | | | | | | | | | | | | | | | | |] | 1300.3 | 20 | | Ů | | | 194 | 21 | 195 | 23 | 2222 | 2236 | | 1 | S18 | W 79 | 1(1c) | | | | | | | | | | | | *4189 | 196 | 24 | 2314 | 2326 | 2319 | 1- | N15 | W42 | 1(1c) | s | 1 | 2259 | 9 | 5 | 3 | | | | | | 4195 | 197 | 24 | 2329 | 2406 | 2340 | 1- | N27 | W44 | 1(1c) | | | | | | | | | | | | 4194 | | | | İ | 198 | 25 | | | | | | | | | | | | | | | | | | | *4197 | | 199 | 26 | | | | | | | | s | 2 | 0135 | 20 | 5 | 3 | *CD | 0138 | 10 | 0139 | 880 | | | 200 | 27 | | | | | | | | | | | | | | | | | | | 4202 | | 201 | 27 | 202 | 30 | | | | | | | | | | | | | | *CD | 0037 | 16 | 0040 | 550 | 187. The plage and spot data for this event are similar to that given for event No. 185. The strong microwave burst on October 19th at 0405 UT, is similar to the one described in note No. 186, No dynamic spectrum observations exist at the time of the burst, At meter wavelengths, the radio event consists of a minor burst, The single frequency observations indicate that a brief burst progresses from high to low frequencies, diminishing in intensity and duration as it does so. 188. No flare observations exist at the time of the large 10 cm. burst on October 20th at 0239 UT., therefore plage and spot data for this event are not available. No dynamic spectrum observations exist at the time of the large burst. 89. The plage and spot data for this event are similar to that given for event No. 185. No dynamic spectrum observations exist at the time of the large SWF on October 20th at 0945 UT. The single frequency observations indicate that the radio event consists of a minor burst, of short duration at the low and intermediate frequencies. This
is a very great solar event, on Octobe The plage and spot data for this event given for event No. 185. The great fla aspect, due to the spreading of the flare to plage. The 10 cm. event consists of a preceded by a "precursor," and followed post-burst increase. Note that the precursor the start of the flare, and the start coincides with the time of spreading of type II burst was observed by Ft. Davi range of 350 - 100 Mc., and the strong | R RADIC | DATA | | |
 | PO | LAR CAP | ABSOI | RPTION | | 1 | | | GEOMA | GNETIC S | TORMS | | | |--------------------------------|--|---|--|----------------|------|-----------------|-------|--------------|---------------|---|-------------|------------|-------|----------|-------|------------------|------------| | Dur.
Min. | Max,
UT | Peak
Flux | Obs. |
Gr.
Day | | Rise to
Peak | Dur. | Peak
Int. | Obs. | | Gr.
Day | Beg.
UT | Dur. | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | 36
5.5
7
3.1 | 2120
2119
2121.3 | 887
>300
1000
>3500 | TK
N(H)
NBS
NBS | | | | | | | | | | | | | | | | 80
4 | 0420
0405.4 | 556
(10) | TK
NAG | | | | | | | | Sept.
21 | 1005 | 1 2d | Sc | ms | 17 | 7 | | 67
31
16
10 | 1336
1336 | (1095)
(432)
180
200
600 | HHI
HHI
UC
N | | | | | | | | 2. | 1003 | 1.20 | St. | ,,,, | • / | , | | >650
>160
9 | 1424 | 160 ¹ 95 > 4000 | IRS
NBS | Sept.
21 | 1700 |) 18h | 63 | 41 | <u>в</u> ,г,н | | 22 | 1345 | 3d | Sc | ms | 17 | 9 | | 0.3
1.0 | 0204.7
0238.5 | 512
502 | TK
TK | | | | | | | | | | | | | | | | > 315
0.8
> 308 | 2028
1926.8
2200 | 450
2000
> 4000 | NBS
NBS | 26 | 210 | 0 - | 24 | 15 | <u>B</u> ,L | | 29 | 0016 | 3.2d | Sc | ms | 18 | 9 | | | | | | | | | | | | | Oct.
03 | 1019 | 0.8d | Sc | m | 2 | 5 | | 3
3
3
2.5
1.6
2 | 0233.8
0234.2
0234
0233.7
0234.8 | 575
(217)
186
(147)
55
160 | TK
NAG
SYD
NAG
SYD
N(H) | | | | | | | | | | | | | | | | 50
17
11
15
9 | 0355
0348
0347
0347
0349 | 499
(43)
148
(24)
58
70 | TK
NAG
SYD
NAG
SYD
N(H) | | | | | | | | | | | | | | | | 13
6 | 0538
0538.5 | 538
(49) | TK
NAG | | | | | | | | 14 | 0440 | 1d | g | m | 12 | 6 | | 10
3.5
4.2
1 | 2153
2153
2154
2152.1 | >1230
421
316
>5200 | TK
SYD
SYD
NBS | | | | | | | | | | | | | | | | 8.5
3
1 | 0152
0152.8
0152.8 | 701
92
305 | TK
NAG
NAG | | | | | | | | | | | | | | | | 63
9
1
0.6 | 0821
0820 | (485)
(184)
78
75 | HHI
HHI
UC
N | | | | | | | | | | | | | | | arge 10 cm. age and spot arst itself is unset oscil- UT, appears region near ther related ability more ic spectrum 1, burst, and of the single This may not be a real flare of importance 3 on October 16th at 0152 UT. Such great flares last much longer than 10 minutes. The event occurred in an exceptionally large, very bright, and very active plage. The β 1 spot No. 12689 is one of the largest spots of the year - area 1500 millionths of the solar hemisphere (Mt. Wilson data) and is possibly a return of β spot No. 12633 in region 4155. No additional 10 cm, events are reported at the time of the flare, other than the event in progress with No. 184, above. No events are reported in the dynamic spectrum, or at meter wavelengths, at the time of the flare. The region in which this flare occurred (plage 4189), its responsible for nine events in this catalogue - Nos. 185, 186, 187, 189, 190, 191, 193, 194, and 195. 186. The plage and spot data for this event are similar to that given for event No. 185. The strong microwave burst on October 18th at 0818 UT, apparently is not associated with any other major solar activity. No dynamic spectrum observations were being made at the time of the large burst. At meter wavelengths, no distinctive events were reported. | -+ | | DYNAMI | C SPECTRUM | DATA | | | | | 200 MC | S DATA | · | | | | 01 | |--------------|--|--|---|---|----------------------------|--|---|--|---|--|---------------------------------------|------------------------|---|--|--| | Event
No. | Type I
Time/Max.
Int. | Type III
Time/Int. | Type II
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Type | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc/s | Туре | Beg.
UT | | 187 | | | | | | | CD | 0412 | 0.3 | | 680 | тк | 9500
2000
1000 | CD
SD
SD | 0357
0403
0404 | | 188 | | | | | | | ESD | 0250.2 | 2 | 0250.5 | 9500 | тк | 9500
2000
1420
1000
600
545 | CA
F
F
F
CD | 0237
0248
0251
0250
0251
0253 | | 189 | | | | | | | CD | 0953 | 0.4 | | >140 | N | 9400
1500
210 | CD
CD
F | 0940
0940
0948 | | 190 | I 1646-
^S 2341/1 | g1638/1
g1646-
1647/1
G1647-
1649/2
G1650-
1651/2
g1701-
1702/3 | *1650-
1658/3+ | * 1651-
2013/3 | <u>н</u> ,м
<u>н</u> ,м | 350-
100
580-
100 | CD | 1646 | 90 | | >> 120 | N | 545
545
450
450
167 | CD
CD
N
CD
N | 1646
1840
1647
1835
1646
1815 | | 191 | | 1702/3 | | | | | SD | 2140,2 | 1 | | 1140 | HIR | | | | | 192 | I in progress
C2145-
2146/3 | G2145-
2146/3 | *2149-
2150/3 | | н,м | 190-
100 | | | | | | | 9500
1420
600
450 | ECD
SD
SD
ECD | 2145
2146
2147
2144 | | 193 | I 1329-
^S 1340/1 | g1301-
1302/3
g1303/2
g1303.5-
1304/2
g1306/2 | *1304-
1307/3 | | М | | CA | 1302 | 6 | | > 48 | С | 1500
600
545
169
169 | SD
ECD
CD
ECD | 1301
1301
1303
1301
1302 | | 194 | , | | | | | | | 0000 | | | >170 | N | 9500 | CA | 2129 | | 195 | I in progress \$2103- 2314/1 C2217- 2218/1 C2226- 2230/2 | g2203-
2206/1
g2207/3
G2213-
2216/3
g2217-
2218/2
b2224/2
G2225-
2229/2
g2225-
2236/3 | *2204-
2205/1
*2226-
2227/1 | ? | <u>s</u> ,m,h | | , cb | 2228 | 4 | | 2170 | N | 2000
1 1420
600
545
167
2000
1000 | SD
CD
F
CD
ECD
ECD
SD | 2213
2218
2218
2219
2213
2212
2220
2220 | | 196 | | g2257-
2259/2
g2300/1
g2314-
2317/1
b2320/2
G2321-
2323/1 | *2310-
2315/1 | | S | | CD | 2257 | 1.5 | | >150 | N (H) | 9500
2000
1000 | CD CD | 225
225
225 | | 197 | | g2324/3
g2325-
2326/1
g2349/1
g2356-
2358/1
b2359/1 | 2358/1 | | S | | | | | | | | 9500 |) CD | 232 | | 198 | | | | | | | | | | | | | 940
200
142 | O CD | 013
013
013 | | 199 | | | | | | | | | | | | | 100 | 0 F | 013
013 | | 200 | 201
202 | T 4n | s g0039/1 | | | s | | | | | | | | 950 | | 00: | | 202 | I in progres
s all day | g0040/2
g0041-
0043/1
g0043- | : | | - | | | | | | | | 375
200
100 | 0 CD | 00:
00: | | | bursts
are rep | 0046/3
orted at th | | io frequencies. | 2: | 212 - 2236 t | Michigan also
JT., but neith | reports Ty
er Sydney | pe IV em
or Ft. D | ission fro
avis cond | om | events are | lare activity,
reported. No | | | | l | Four of the nine (instead of Sc), be The plage and sp given for event No are reported at the at 2204 and 2226 with a flare in pr | ot data for to 185. No kno time of the T | this event are
twn SWF and no
type II bursts of
tests are prob | 21st. similar to that o 10 cm, events on October 23rd ably associated | 196. N
by
w
r: | o 10 cm. bu
urst on Octol
ith only min-
adio frequen-
plar event | ition. rsts are rep ber 24th at 23 or flare active cy observatic started at 22 rst on Octobe | orted at the IO UT. The Ity, and the IO UT. (i | e time of
e burst is
e SWF ar
to indic
nstead o | the Types associated the single that the first | e II 198.
ted
gle
the
T). | (4197) is described in | | rich and
ntensity
major
a returi
173. Th | ivery land are events in of the a | 9. MT -10R 2. ¥J | | | PL. | AGE DA | TA | | | | <u> </u> | SU | NSPOT | DATA | | | | |--|--|--------------|---|---|--|--|--|---|--|--|--|---|--|--| | CMP
Gr. Day | Mean
Long. | Mean
Lat. | Ave.
Int. | Max.
Area | No.
Flares | Age in
Rotations | | MT.W.
Type | CMP
Gr. Day | Mean | н | When
Seen | Агеа | MT.W. | | Oct. 31.5 | 248° | S18 | 3 | 18,000 | 54 | 3 | 4167 and
4175 | lpfd
•lγl | Oct.
31.7
Nov.
1.0 | S15
S24 | † 17
20 | 25-4
25-6 | | 12730
12732 | | Nov. | 63° | S 21 | 2.5 | 8,000 | 17 | 3 | 4189 | lad | 14.9 | S 23 | 10 | 8-16 | | 12768 | | | | | | 3,000 | | | | 220 | 11,0 | 5 25 | 10 | 0-10 | | 12700 | | 12.0 | 96° | N18 | 3,5 | 11,000 | 16 | 1 | NEW | løpd
LøL | 11.7
12.5 | N19
N19 | 19
16 | 5-12
5-18 | | 12762
12763 | | 20.0 | 351° | N26 | 3.5 | 7,000 | 28 | 1 | NEW | Lβp L
d×L | 20.0
18.7 | N28
N26 | 18
(10) | 16-25
21-24 | | 12779
12790 | | 27.0 | 259° | S15 | 3.5 | 8,500 | 38 | 4 | 4207 | Lapd
LβpL | 26.7
26.7 | S10
S16 | (10)
21 | 20-26
20-2 | | 12787
12788 | | 25.5 | 278° | S15 | 3 | 7,00 0 | 12 | 2 | 4214 | <i>l</i> βf.L | 25.4 | S13 | 21 | 18-1 | | 12784 | | Dec.
5.0 | 153° | N39 | 1.5 | 1,000 | 1 | 2 | 4220 | | | | | | | | | time of th
herefore pile. No SW
ncies are
are similatirum obset
it on Novei
ort duratio | e Type II plage and F, and no reported ar to that ervations mber 6th | 210 | even
the
dura
leng
D. This
port
mag | ts reported
radio even
tion, which
ths.
long inter-
ed by stat
netic latitu | at the s
nt consist
occurred
val of wer
ions white
des, and | ingle radists of a laimost standard sta | west limb of of frequencies burst of relational frequencies burst of relational frequency freque | indicate that titively short at all wave- 213. once was re- y high geo- torial zone. s associated | This so-calle disturbance. The large 10 associated w bright plage, the time of the exist at metereported at oradio event coradio event coradio event with diminish. | cm. bu ith flare No dyna he large r wavel ther sin onsists h the fre | rst on
e active
mic per
10 cm
engths
gle rad
of a be | November
ity in a vectrum evec
burst, No
at this tim
io frequence
urst which
es, from hig | 15th at 00
very large
ents are rook
known obs
ne. Events
cies indica
appears to
gh to low fre | 522 UT. is
and very
eported at
servations
which are
te that the
progress | | -+ | Type I | | IC SPECTRUM | | | | | | | /S DATA | | | | | ОТНІ | | |-----------|------------------------------|----------------------------|----------------------|----------------------|-------------|----------------|----------|------------|--------------|------------|--------------|---------|----------------------|-------------------|------------------------|--| | ent
D. | Type I
Time/ Max.
Int. | Type III
Time/Int. | Type II
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Туре | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc/s | Туре | Beg.
UT | | | 3 | | b2120/3 | *2119-
2121/2 | | <u>H</u> ,M | 210-
130 | CD | 2119 | 1 | | >160 | N(H) | 167 | CD | 2119.1 | | | 4 | | | <*2240-
2242/2 | | s | | | | | | | | | | | | | 5
6 | | | | | | | С | 1205 | 11.5 | | 38000 | N | 1500 | an. | 1904 | | | <u>"</u> | | | | | | | CD | 1203 | 11.5 | | 30000 | ., | 1500
600
545 | CD
SD
CD | 1204
1206
1205 | | | | | | | | | | | | | | | | 169
81
81 | CA
SED
SED | 1205
1214
1218 | | | _ | | | *0424 | | s | | | | | | | | 81 | CD | 1221 | | |
7 | | | *0424-
0434/2 | | U | | | | | | | | | | | | | 96 | | | | | | | CD | 0837 | 7 | 0838 | >120 | N | 9400
1500
600 | SD
SD
ESD | 0838
0837
0838 | | | | | | | | | | | | | | | | 169 | ECA | 0838 | | | 09 | | | | | | | | | | | | | | | | | | 11 | | g0457.5- | *0502- | | s | | СО | 0457.5 | 2.5 | | >160 | N(H) | 9500 | ECD | 0457.5 | | | | | 0459/2
G0459-
0503/3 | 0505/3 | | | | | | | | | | 2000
1420
1000 | SED
SED
SED | 0457
0458
0457.5 | | | 12 | | | | | | | | | | | | | 545 | CD | 0458 | | | 13 | | | | | | | | | | | | | 9500 | CD | 0525 | | | | | | | | | | | | | | | | 2000
1420
1000 | CD
F
SD | 0526
0530
0542 | | | 14 | | | | | | | | | | | | | 600 | SID | 0543 | | | 15 | | | ***** | | | | | 0050 5 | | | | _ | 9500 | SD | 0323 | | | 16 | | | *0050.5-
0052/2 | | s | | SO | 0050,5 | 0.5 | | 1700 | T | 9500
2000 | ECD
SD | 0042
0042 | | | 17 | | | *0413.5-
0422.5/3 | | s | | F | 0408 | 8 | 0414 | 1400 | Т | 9500
2000
1420 | ECD
CD | 0406
0406
0407 | | | | | | | | | | | | | | | | 1000
600
545 | 69
69
69 | 0406
0409 | | | 18 | | | | | | | CD CD | 0758 | 12 | | >160 | N | 9400 | CD | 0750 | | | | | | | | | | | | | | | | 1500
600
545 | ECD
CD | < 0759
0753
0754 | | | 19 | | | | | | | CA | 0850 | 65 | | > 50000 | N | 169
9400 | CD | 0754
0857 | | | | | | | | | | | 5550 | 0.0 | | 2 00000 | | 9400
1500 | SEO
CEO | 1105
0857 | | | | | | | | | | | | | | | | 1500
600
600 | CD
ECA
CA | 1105
0901
0931 | | | | | | | | | | | | | | | | 600
600 | CA
CA | 0956
1105 | | | | | | | | | | | | | | | | 545
169
169 | CA
SA
CA | 0900
0836
0905 | | | 20 | | | | | | | | | | | | | 23 | s | 0928 | | | 21 | | G1811- | | * 1811- | н | 580- | sp
Sp | 1805 | 60 | | (30) | N(P) | 545 | | 1810 | | | .00 | 90440 | 1812/2 | | 1931/3 | ~ | 100 | CA | 0415 | >160 | 0623 | === | | 450 | CD | 1810
1832 | | | 222 | S0449-
>0632/3 | S0442-
>0632/2 | *0416-
0430/1 | | s | | | V11.0 | 7100 | 0423 | 550 | Т | | | | | | 23 | | S>0000- | *0059- | | s | | | | | | | | 9500 | SID | 0047 | | | | ĺ | 0222/1
g0101/2 | 0103/2 | | 3 | | | | | | | | 3330 | | 3041 | | 215. No known flare or SWF are reported at the time of the large 10 cm, burst on November 18th at 0321 UT., therefore plage and spot data for this event are not available. No dynamic spectrum event is reported at the time of the burst. No events are reported at any of the single frequencies, except for a burst at 9500 Mc. 216. No known flare is reported at the time of the Type II burst on November 20th at 0050 UT., therefore plage and spot data for this event are not available. 18. The plage and spot data for this event are similar to that given for event No. 217, No dynamic spectrum observations exist at the time of the large 10 cm, burst on November 23rd at 0754 UT. The single frequency radio observations indicate that the radio event consists of a major burst. 219. This is a great solar event, on November 24th at 0848 UT. The great optical flare has a "double" aspect, which is repeated in the SWF and in the radio event. No dynamic spectrum observations exist at the time of the large flare and great 10 cm. burst. However, the single frequency reports indicate that Type IV radio emission may have occurred. b) It is difficult to assign a definite start to this storm. To tions start the storm earlier, on 23rd at 22xx UT. Two stations start the storm on 24th at 09xx UT., which it close to the starting time of the great flare descr event No. 218. Three stations start the storm even la 25th at 03xxUT. Nine stations continue the storm through the continue the storm through the continue the storm through the continue the storm through the continue the storm through the continue the storm. 221. The flare association with the Type IV event on Nor at 1811 UT. is ambiguous. Two minor flares occ simultaneously in two different regions on the sun (at they are fairly close to each other). Information is given both of these flares. The plage and spot data for the contraction of the contraction. | | | | PL | AGE DAT | ГА | | | | | ŠU | NSPOT | DATA | | | | |--------------------------|----------------|---------------|--------------|--------------|------------------|---------------|---------------------|-------------------------|--------------------|----------------------|-------------------|----------------|-------------------------|------|----------------------| | M.
e No. | CMP
Gr. Day | Mean
Long. | Mean
Lat. | Ave.
Int. | Max.
Area | No.
Flares | Age in
Rotations | Ident. | MT.W.
Type | CMP
Gr. Day | Mean
Lat. | Н | When
Seen | Area | MT.W
No. | | 69 | Nov.
29.5 | 225 | S18 | 3,5 | 5,000 | 27 | 1 | NEW | ·dppl | Nov.
29.8 | S19 | 21 | 24-3 | 1500 | 12800 | | :88 | Dec.
3.5 | 173° | S 20 | 3.5 | 7,000 | 47 | 4 | 4218 | *171 | Dec.
3.3 | S 18 | 20 | 26-10 | 1200 | 12808 | | 95 | 09.5 | 9 4 ~ | N15 | 2.5 | 4,000 | 7 | 2 | 4230 | lpd | 9.9 | N18 | 9 | 3-11 | | 12832 | | 88 | | | | | | | | | | | | | | | | | 95 | | | | | | | | | | | | | | | | | 314 | 20 | 316" | N17 | 3.5 | 8,500 | 43 | 1 | NEW | ·lBTL | 20.1 | N18 | 22 | 13-26 | 1300 | 12855 | | 314 | | | | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | | | | 314 | 314 | | | | | | | | | | | | | | | | | 323
321
314 | 27
24 | 223°
263° | S 14
N22 | 3
3 | 10,000
12,000 | 21
40 | 2
1 | 4269
NEW | LBL
* LBpl | 26.7
24.6 | S 19
N23 | 14
27 | 20-1
18-31 | 1300 | 1288
1287 | | 319 | 24 | 263 | S 22 | 3 | 14,000 | 24 | 5 | 4263 | lapd
IBl
dBl | 23.7
23.8
24.7 | S14
S25
S25 | 11
21
18 | 17-28
17-30
19-30 | | 1287
1286
1287 | | 314
319
313
322 | 19
25,5 | 329
243 | S 14
S 21 | 3
2 | 11,000
3,600 | 13
1 | 1
5 | NEW
4265 and
4267 | lßpl
lßpl | 19.1
25.3 | S15
S16 | 36
12 | 12-24
19-30 | | 1287
1287 | | 314 | | | | | | | | | | | | | | | | n, coincident with the start h is associated with event riod of this event No. 231, one exist at the time of the ents are reported at any of early as Dec. 10th at 08xx at 03xx UT., but the 3-hr. 'n given for event No. 229. The Type Illiburst on December 12th at 1809 UT, was observed by Ft, Davis over a frequency range of 135 - 100 Mr. Only minor bursts are reported at 10 cm. and at meter wavelengths, and no distinctive events are reported at any other single radio frequencies. 235. This large SWF on December 13th at 0156 UT, and very large 10 cm, burst are associated with an average optical flare in a region located at the east limb of the sun. This given for event No. 235. The very large 10 cm, burst and the complex by spot No. 12855 is one of the largest spots of the year - area equal to 1300 millionths of the solar hemisphere. In addition to the numerous Type III bursts in the dynamic spectrum, Sydney also reports many reverse drift bursts between 0221 and 0252 UT. The active plage 4314 is responsible for eleven events in this catalogue Nos. 235, 236, 237, 238, 239, 240, 241, 245, 247, 249, and 257, | | -+ | VIS | M. EVE | 10 C | | rs. | | DIO FAI | AVE R. | ORT-V | SH | | | | TA | RE DA | FLA | | | | |-------------------|--------------|----------------|--------------|--------------|-----------|----------------|--------------------|--------------------|--------------|---------|------|----------------|-------------|------------|------|--------------|--------------|--------------------------------|------------|--------------| | McM.
Plage No. | Peak
Flux | Max.
UT | Dur.
Min. | Beg.
UT | Туре | No. of
Obs. | ide
read
dex | Dur. Sp
Min. Ir | Beg.
UT | Imp. | Туре | No. of
Obs. | ion | Posit | Imp. | | ind Ma | | Gr.
Day | Event
No. | | | İ | | | | | | | | | | | | | | | | | | Oct.
31 | 203 | Nov.
04 | 204 | | | 1 | | | | | | | | | | | | | | | | | | 05 | 205 | | *4207 | 550
16 | 1207.3 | 8
270 | 1205
1213 | *2
4 | 10 | 5 | 14 | 1207 | 2+ | S | 6(1c) | W54 | S 24 | 2 | 1207
1237 | <u>1257</u> | 1205 | 05 | 206 | | | 330 | 0422 | 4 | 0420.5 | SD | | | | | | | | | | | | | | 06 | 207 | | 4207 | 572 | - | 3 | 0837 | *2 | 4 | 5 | 29 | 0833 | 3- | s | 9(6c) | W67 | S 28 | 2 | 0841 | 0900 | 0834 | 06 | 208 | 06 | 209 | | 4237 | 440 | 0459 | ٥ | 0.45 | | • | • | | 0450 | | | | | | | | | | 08 | 210 | | 4237 | 440 | 0458 | 8 | 0457 | CD | 2 | 3 | 15 | 0458 | 1 | s | 1(1c) | E27 | S 25 | 1 | 0458 | 0511 | <u>0457</u> | 13 | 211 | 13 | 212 | | 4230 | 537 | 0542 | >33 | 0522 | *CA | 2 | 3 | 51 | 0527 | 1- | G | 3(2c) | W 45 | N18 | 1+ | 0537 | 0636 | 0517 | 15 | 213 | 17 · | 214 | | | 5 592
445 | 0325.5
0045 | 14
!1 | 0321.5 | *SD
SD | 4 | 5 | 58 | 0040 | . 2 | SI | | | | | | | | 18 | 215 | | 4246 | 870 | 0409 | 30 | 0406 | *CD | 4 | 5 | 33 | 0406 | 3- | s s | 2(1c) | W28 | N31 | 2 | 0409 | 0446 | 0404 | 20 | 216 | : | | | | 4246 | 560 | | 14 | 0754 | *CD | 7 | 5 | 40 | 0757 | 2 | s | 10(4c) | W54 | N26 | 2 | 0802 | 0925 | <u>0750</u> | 23 | 218 | | •4263 | >998 | | 40 | 0859 | *CD | 4
2 | 5
4 | 32
16 | 0901
110' | 3-
1 | s | 7(4c)
7(4c) | | S14
S12 | 3 3 | 0911 | 1100 | *0848 | 24 | 219 | | | | | | | | • | 7 | 10 | 110 | • | S | *(10) | 233 | 312 | s | 1109 | 1202 | *1100 | 24 | 220 | | a 4257
b 4263 | 38 | 1855 | >180 | 1811 | 3 | | | | | | | 1(1c)
1(1c) | E12
E24 | | | 1855
1842 | 1939
1950 | a <u>1817</u>
b <u>1825</u> | 24 | 221 | | 4246 | | | | | | 1 | 1 | 59 | 0449 | L 1 | s | 1 | W71 | N29 | 1+ | | 0509 | 0457 | 25 | 222 | | 4282 | |
| | | | | | | | | | 1(1c) | E63 | N41 | 3+ | 0213 | 0600 | * <u>0045</u> | 26
29 | 223
224 | 204. No known flare, no SWF, and no 10 cm, events are reported in association with the Type II burst in progress on November 4th at 2240 UT, therefore plage and spot data for this event are not available. No events are reported at any of the single radio frequencies. Any positive flare association with this PCA event on November 5th at 0200 UT, is unknown. A possible solar event may have occurred at the time of the Type II burst described in the preceding event, No. 204, but the association is discouraging because of the lack of related events with this burst. It may be possible that the proton event is mostly influenced by the occurrence of the next major solar event, described below in event No. 206. 206. The large 10 cm, burst on November 5th at 1205 UT, is associated with a flare in a very large, bright and active region which contains a complex \(\gamma \) spot. No dynamic spectrum observations were being made at the time of the large burst. A great burst was reportengths. 207. No known flare was reported at the burst on November 6th at 0424 UT., spot data for this event are not availa events at any of the single radio frequent with the Type II burst. 08. The plage and spot data for this even given for event No. 206. No dynamic spe exist at the time of the large 10 cm. but at 0837 UT. This burst is of very s 2.VIII-112 2. VIII - 11L | ER RADIO | DATA | | | | | POL | AR CAP | BSORPT | ION | | | | GE | OMAGN | ETIC | STORM | 3 | | | |---|--|--|--|--|--|---|--|--|--|---|--|--|--|---|---------------------------------------|-------|------|------------------|------------| | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | | Gr.
Day | | Rise to
Peak | Dur. | Pea | | | Gr.
Day | Be ₁ | | ur. | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | 17
7
6 | 0405.5
0405.7
0406.1 | 935
(135)
(109) | TK
NAG
NAG | | | | | | | | | | • | | | - | | _ | | | 66
10
8
10
8
25 | 0254
0255
0255
0254.7
0252 | 1080
(339)
252
(200)
220
>300 | TK
NAG
SYD
NAG
SYD
N(H) | | | | | | | | | | | | | | | | | | 34,5
3
10 | 0940
0940.3 | (468)
(224)
36 | нні
нні
s м | | | | | | | | | | | | | | | | | | 45
200
43
215
89
340 | 1656
1915
1700 | >>400
14000
1000
3700
880 | n
NBS
NBS
NBS | | | | | | | | : | | | | | | | | | | 6.3
4
3.5
0.5 | 2146
2146
2149
2145 | 1042
300
112
1300 | TK
SYD
SYD
NBS | | Oct.
20 | 2100 | 22h (| 5 4 62 | 2 | <u>B</u> ,L,H | | | | | | | | | | | 8
8
1.5
1 | 1302 | (214)
84
120
>190
72 | HHI
UC
N
UC | | | | | | | | | Oet.
21 | 2241 | 2d | Sc | ms | | 9 | | | 92
2
6
12.5
1
1.3
25.4
2 | 2243
2217.9
2213
2219
2217.8
2214
2226.8
2226.9 | 183
98
120
1100
1600
(12) | TK NAG SYD SYD N NBS NBS NAG | | | | | | | | | 21 | 2071 | zu | SC | ms | | | | | 5
7
7 | 2257
2257
2301 | | TK
NAG
NAG | - | | | | | | | | | | | | | | | | | 17 | 2327 | 495 | тк | | | | | | | | | | | | | | | | | | 8
8
6
6.5
7 | 0141
0139
0139
0141.6
0140 | (21)
(125)
99
(1160)
44 | NAG
NAG
SYD
NAG
SYD | | | | | | | | | | | | | | | | | | 21
9
9
8 | 0039,6
0040
0040
0039,9 | 575
(78)
(64)
(60) | TK
NAG
NAG
NAG | | | | | | | | | 27 | 06 | 3.4d | g | m | | 2 | 5 | | F or 10 cm
reported a
ibed in not
this regio
i is not re
catalogue
plage 4156
. 12707 is | e
n
200. | No flare obs
were being
October 26t
this event a
ported at
This region
The \$p\$ s
year - area
(Mt. Wilson | made at h at 0138 are not a meter was similar pot No. 1 equal to | the time
UT., there
wailable. It
ravelengths
ar to the pl
12733 is on | of the la
efore pla
No disting
at the
lage desc
ne of the | arge 10 d
age and s
active en
time of
ribed in
largest | em, burst
spot data f
vent was r
f the burs
note No. 6
spots of t | on
or
e- 202
st.
55.
he | th
la
la
pl
S'
r'
g; | his storm is really ie 3-hr. kp values o flare observation arge 10 cm. burst o age and spot daw F, and no distinc eported at the time roups of Type III b iso reports several 044 UT. | reach 5 for severe being on October if for this ettive event in of the burstursts in the | or only ng made 30th at (event ar at mete t. In add dynami | one 3-hi e at the 0037 UT. e not av r wavele lition to c spectri | time of
, theref
ailable.
engths,
the vari
um, Syd | the
ore
No
are
ous
ney | | | | | | | Type I | | IIC SPECTRU | | | T | Tuna | | | /S DATA | | | | | ОТН | |-------------|--|--|----------------------|----------------------|------|----------------|----------|--------------|--------------|--------------|--------------|----------|--|---|--| | vent
Io. | Time/Max.
Int. | Type III
Time/Int. | Type II
Time/Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Туре | Beg.
UT | Dur,
Min. | Max.
UT | Peak
Flux | Obs. | Freq.
Mc/s | Type | Beg.
UT | | 225 | | | | | | | | | | | | | | | | | 226 | | | | | | | | | | | | | | | | | 227 | | | | | | | | | | | | | | | | | 228 | | | | | | | | | | | | | | | | | 229 | I _s in progress | g0348/1 | *0400-
0419/2 | | S | | | | | | | | 9500
2000
1000
1000 | CD
SD
CD
F | 0350
0349
0349
0401 | | 230 | | | | | | | | | | | | | 9500
2000
1000 | CD
SD
F | 2346
2346
2346.5 | | 231 | | | | | | | | | | | | | | | | | 232 | | | | | | | | | | | | | | | | | 234 | S1757- | | *1809- | | н | 135- | ECD | 1758 | 13.5 | | > 54 | С | 1 | | | | 235 | 1810/2 | g0159/2 | 1814/3 | | s | 100 | F | 0231,5 | 6.5 | 0236 | 300 | тк | 9500 | CA | 0156 | | | | g0218/2
g0233/2
G0235-
0237/2
g0245-
0247/2 | | | · | | - | | | | 333 | | 2000
1420
1420
1000
1000 | CA
SD
SD
SD
SD | 0159
0159
< 0230
0159
0228 | | 236 | | | | | | | CD | 1238 | 17 | | > 5000 | N | 9400
1500
600
545
536
169
23 | CD
CD
ESA
CD
CD
ESD | 1228
1230
1237
1237
1230
1240
1244 | | 37 | I in progress
s all day | III_ in prog- | *0803- | | s | | CD | 0804 | 21 | | > 950 | N(H) | 1500 | CD | <0805 | | | Sall day
\$0620-
0847/3
C0620-
>0847/3 | rešs all day
G0804-
0810/3 | 0825/3 | | | | | | | | | | 600
545
169 | ECA
CD
ECA | 0802
0803
0804 | | 239 | | | | | | | CA
CA | 0859
0923 | 6 11 | 0901
0931 | 270
1650 | AB
AB | 9400
1500
810
600
600
600
545
169 | CD
CD
ECD
SA
SA
ECA
CD
ECA
SA | 0930
0916
0904
0909
0919
0926
0918
0926
0939 | | 240 | | | | | | | ļ | | | | | | | | | | 41 | I in progress
s all day | G0545-
0546/3
G0551-
0552/2 | *0546-
0552/3 | | S | | CD | 0545 | 2 | 0545.4 | 3000 | TK | 9500
2000
1000
600
545 | SD
CD
CD
CD | 0545
0544
0544
0545
0543 | | 42 | | | | | | | į | | | | | | 9500
2000
1000 | SID
SID
SID | 2345.
2346
2346 | | 43 | | | | | | | | | | | | | 9500
2000 | CD
SD | 0232
0234. | | 244 | | | | | | | | | | | | | 9500
2000
1420
1000
600 | CD
CD
CD | 0437
0437
0439
0437
0440 | | 45 | | | | | | | CD | 1028 | 5 | | > 900 | N | 9400
1500
600
545
169 | CD
SD
CA
CD
CA | 0437
1028
1025
1028
1028
1028 | major SWF are associated with a flare located very near the east limb of the sun. No dynamic spectrum observations are available at the time of the large 10 cm, burst on Dec. 14th at 1227 UT, Type IV emission may perhaps be deduced from the single frequency observations. 237. Four of the 6 stations end the storm on 15 th at 20xx UT. However, the 3-hr. Kp values reach a maximum value of 5 on both the 15th and the 17th. Therefore the storm is given the longer duration, although perhaps a truer picture would be given if the entire interval were divided into two storms, starting on 15th and 16th. 238. The plage and spot data for these events are similar to that given for event No. 235. The same flare is apparently 239. related to the major SWF on December 19th at 0757 UT., with its Type II burst at 0803 UT., and
to the large 10 cm. burst at 0917 UT. No SWF is reported at the time of the large 10 cm. burst. The dynamic spectrum observations at Sydney end at 0847 UT. and therefore do not cover the period of event No. 239. The single frequency observations indicate that a major + burst occurred with each event. 241. The plage and spot data for this event are similar to that given for event No. 235. The large 10 cm. microwave burst on December 20th at 0544 UT, occurs almost sim with the Type II burst and with the large burduration which are reported at the various others frequencies. 242. The flare data at the time of the large 10 ct December 21st at 2345 UT. is ambiguous. Nume flares were occurring on widely scattered p solar disk. Information concerning each of thes given. Flare b is in a very large, bright and a (4321), containing the \$\mathscr{D}_{2}\$ popt No. 12874, whit the largest spots of the year - area equal to 1300 2.0111 -12R | | - F.Y - | CE DAM: | | | | | | SUNSPOT | DATA | | | | |--|---------|--|---|--|--|--|---|----------------------|---------------------------------|------------------------|------------------------|----------------------| | CMP Mean | Mean . | GE DATA Ave. Max. | No. | Age in | Ident. | MT.W. | СМР | Mean | Н | When | Area | MT.W. | | Gr. Day Long. | Lat. | Int. Area | | Rotations | | Type | Gr. Day | Lat. | | Seen | | No. | : | | | | | | | | | | | | | | : | Dec. | | | | • | | 10.4 | Dec. | | (15) | 24.20 | | 1900 | | 21.0 302 | S14 | 2 2, | 000 13 | 3 | 4255 | dβl | 20.5 | S 04 | (15) | 24-26 | | 12894 | | | | | | | | i | ļ | | | | | | | | | | | | | | i | consist of large
No known flares
es, therefore any
or Type III bursts | 254 | latter, the ti
noise storm.
This is a | | | es the end of a | | No known flare
10 cm, burst
spectrum obse
and only a mis | on Decer
rvations | nber 25t
e xi st at f | h at 0530
he time o | D UT. No
of the lar | dynamic
ge burst, | | ith each of these
rted at any of the | | follows three
This large 1 | extremely of om, burs | quiet days,
t on Decemi | oer 25th at 043 | 4 UT. is 257. | and at all other The plage and | single ra | dio freq | uencies. | Dacamba | ar 25th at | | nts are similar to
SWF is reported
December 24th at | | a resurgence
western part
exist at the | in brightn
of the disk.
time of the | ess and fla.
No dynamic
large burst. | age which exp
e activity whe
spectrum obse
No distinctive | eriences
en in the
rvations 258. | The plage and 1815 UT, are | similar
spot data | to that
for this | given f | or event | No. 235. | | s are reported at
pectrum. For the | | reported at n | neter wavele | ngths. | | | Type II burst
a frequency ra | at 1822 t | JT. was o | bserved | by Ft. D | avis over | | | | | FL. | ARE DA | ATA . | | | | SH | ORT-W | VAVE R | ADIO F | AD EOU | TS | | 10 C | M. EVEN | TS | | | |-------|------------|-------------|---------------|----------------|-------|-------|-------------|--------|----------|-------|------------|--------|-------------------------|--------|-------------|----------------------|--------------|------------------------|----------------|-----------| | Event | Gr, | Beg. | End | Max. | | Posit | tion | No. of | Туре | lmp. | Beg. | Dur. | Wide
Spread
Index | No. of | Туре | Beg. | Dur. | Max. | Peak | McM, | | No. | Day | UT | UT | UT | | | | Obs. | <u> </u> | | υ τ | Min. | Index | Obs. | <u> </u> | UT | Min. | UT | Flux | Plage No. | | 246 | Dec.
22 | 247 | 23 | 0025 | 0040 | 0029 | 1 | N18 | W38 | 6(2c) | SL | 1. | 0022 | 43 | 5 | 3 | *ESD | 0024.5 | 4 | 0025.5 | 582 | 4314 | | 248 | 23 | 0038 | 0052 | 0039 | 2 | N26 | E40 | 2(1c) | SL | 1+ | | | | | *ESD | 0038 | 2 | 0038,5 | 564 | 4321 | | 249 | 23 | <u>1436</u> | 1523 | 1440 | 1+ | N18 | W4 5 | 3(1c) | SI. | 2+ | 1438 | 24 | 5 | 7 | *CD | 1441 | 10 | | 602 | 4314 | | 250 | 24 | | | | | | | | | | | | | | *CD | 0018 | 7 | 0019.5 | 511 | | | 251 | 24 | ŀ | | | | | | | ŀ | | | | | | *CD | 0103 | 1 | 0103.7 | 527 | | | 252 | 24 | | | | | | | | 1 | | | | | | *CD | 0127 | 3 | 0127.7 | 503 | | | 253 | 24 | 0221 | 0234 | 0227 | 1 | N21 | E01 | 1(1c) | | | | | | | *SD
*CD | 0222
0227.5 | 1
2,5 | 0222.5
0229.5 | | 4321 | | 254 | 25 | | | | | | | | | | | | | | l | | | | | 4015 | | 255 | 25 | 0435 | 0437 | | 1 | S 07 | W59 | 1 | s | 2+ | 0430 | 25 | 5 | 2 | *SD | 0434 | 16 | 0437 | 800 | 4315 | | 256 | 25 | Ì | | | | | | | | | | | | | *CD | 0529.9 | 5 | 0530.2 | 524 | | | 257 | 25 | 1632 | 165 | <u>5</u> 163 | 5 1- | N21 | W72 | 2(2c) | *s | 3 | 1628 | 29 | 5 | 7 | 3
2
2 | 1627
1628
1634 | 19
3
6 | 1634
1629.2
1635 | 8
26
445 | 4314 | | 258 | 25 | 1812 | 190 | <u>o</u> · 182 | 2 1+ | S 07 | W70 | 1(1c) | *sl | 3 | 1815 | 47 | 5 | 7 | 6
4 | 1815.6
1822.6 | | 1818.3 | 3 185
10 | 4315 | | 259 | 26 | | | | | | | | s | 2+ | 0245 | 40 | 5 | 5 | *ECD | 0245 | 15 | 0246 | 2300 | | | 260 | 26 | | | | | | | | s | 1+ | 0443 | 20 |) 1 | 1 | *SD
*CD | 0435
0449,3 | 2
8 | 0436
0450 | 513
500 | | | 261 | 28 | 222 | 9 23 3 | 11 223 | 30 2 | N25 | w 50 | 1(1c) | s | 2+ | 2230 | 31 | 5 | 7 | | | | | | 4321 | | 262 | 29 | 1 | 263 | 31 | This Type IV radio emission on December 22nd is reported by Ft. Davis to be "intermittent throughout the day," and is not specifically associated with any special flare or flares, but rather is due to the presence of very active regions on the sun. 247. The plage and spot data for this event are similar to that given for event No. 235. No distinctive event is reported at meter wavelengths at the time of the large 10 cm. burst on December 23rd at 0024 UT. Only a minor Type III burst is reported in the dynamic spectrum. The SWF for event No. 247 also covers the time of this event - a large 10 cm, burst on December 23rd at 0038 UT, No distinctive event is reported at meter wavelengths at the time of the 10 cm, burst. 249. The plage and spot data for this event are similar to that given for event No. 235. The Type IV burst on December 23rd at 1437 UT, was observed by Ft. Davis over the whole fre-quency range of 580 - 100 Mc. 250. These similar events on December 24th 251, 10 cm. bursts at 0018, 0103, and 0127 UT 6 or SWF's are reported at any of these tin 252. plage and spot data are not available. Min are reported in the dynamic spectrum v events, but no distinctive events are reported other single radio frequencies. 253. The plage and spot data for these ever that given for event No. 242b. No known at the time of the large 10 cm. bursts on 0222 and 0229 UT. No distinctive event meter wavelengths or in the dynamic s | RADIO | DATA | | | | 1 | POLAR CAP | ABSORP' | rion | | | | GEOM. | AGNETIC | STORM | is | | |---|--|--|--|---|--|---|----------------------|--------------------------------|--|--|-------------------------------------|---------------------------------|--------------------------|---------|------------------|------------| | Dur.
Min. | Max.
UT | Peak
Flux | Obs. | Gr.
Day | Onset
UT | Rise to
Peak | Dur, | Peak
Int. | Obs. | Gr.
Day | Beg.
UT | Dur. | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | | | | | | | | | | | Dec
01 | . 0330 | 1.8d | g | m | 8 | 6 | | 32
6
6
8 | 0407
0352
0349.8
0406 | 508
(19)
(23)
(36) | TK
NAG
NAG | | | | | | | 05 | 00 | 2d | g | m | 5 | 5 | | 10
5
5 | 2348
2348.5
2348.5 | 608
(174)
(233) | TK
NAG
NAG | 07 | 07
03 | 0.7d
2.8d | g | m
ms | 3
8 | 5
6 | | 60
43
3
14
4 | 0205
0200
0200
0235
0200.5
0234 | 2275
(211)
165
190
(20)
(18) | TK
NAG
SYD
NAG | | | | | | | | | | | | | | | 53
19
19
46
16
1 | 1241
1240
1245 | (940)
(397)
504
> 400
630
> 85 | HHI
HHI
UCL
N
PRA
UC
AOP | | | | | | | | λο | 2.04 | | | | | | >7.5
23
30
11 | 0804.5 | (316)
1140
>300
>810 | HHI
UC
N(H)
UC | | | | | | | 15 | 08 | 3.3d | g | m | 6 | 5 | | 9
31
39
5
7
11
18
9
300 | 0933
0933
0931 | (411)
(243)
>400
36
60
575
>350
>415
260 | HHI
HHI
CRA
UC
UC
N
UC | | | | |
 | | | | | | | | | 10
3
3
1.5
2 | 0545.8
0545 | 1129
(154)
(1600)
523
> 300 | TK
NAG
NAG
SYD
N | | | | | | | 19 | 0937 | 2 d | Sc | m | 4 | 5 | | 4
3
2 | 2347
2347
2347 | 807
(41)
(27) | TK
NAG
NAG | | | | | | | | | | | | | | | 11
2 | 0235.5
0235.2 | 946
(35) | TK
NAG | | | | | | | | | | | | | | | 7
5
1
3
3
3.5 | 0439
0439
0439
0439
0439 | 634
(93)
479
(915)
180
200 | TK
NAG
SYD
NAG
SYD
N(H) | | | | | | | ;
; | | | | | | | | 35
10
5
30
17
12 | 1031
1031 | (736)
(236)
205
> 400
> 630
> 180 | HHI
HHI
UC
N
UC
CAV | | | | | | | | | | | | | | | ltaneou
ts of sh
ingle ra | ort
dio | exist at the
event is reported at | e time of
eported :
the time | the large 1
at meter wards of the event. | 0 cm. burst
velengths, | im observation. No distinct and no SWF | ive
'is | Dec
flar
sola
spec | ember 22nd at 0-
es were occurri
ir disk. No kno
etrum observatio | the time of the
437 UT. is ambig
ng in widely sca
wn SWF is rep
ns exist at this tin | uous. Nu
ittered re
orted, an | merous
egions o
d no dyr | small
in the
namic | | | | | n. burst
rous sm
irts of
e flares
tive plant
h is one
million | the
is
is
e
of | 12870 is a l
No dynamic | e of the
return of
spectru
m. burst | large 10 cr
the Bp spot
m observation | n. burst. T
No. 12788 t
ons exist at | and at 0233 U
he exp spot h
n region 4263
the time of t
is reported | lo. 245
31.
he | given
exist
on D
mete | n for event No. 2
t at the time of
December 22nd at | wavelengths, data for this evo 35. No dynamic s the major SWF a 1030 UT, A larg and simultaneous | pectrum
nd large
e burst is | observa
10 cm. i
s report | tions
burst
ed at | | | | 2R 2.VIII-12R | | | | | LARE D | | N- ·- | | | | | | | ADEOUT
Wide | | L | | CM. EVE | | D : | t^- | |--------------|--------------------------|--|----------------------|------------------|------|-------|-------------------|-------------------------|------|------|------------|--------------|-----------------|----------------|--------|--------------|--------------|------------|--------------|--------| | Event
No. | Gr.
Day | Beg.
UT | End
UT | Max.
UT | Imp. | Posit | ion | No. of
Obs. | Туре | Imp. | Beg.
UT | Dur.
Min, | Spread
Index | No. of
Obs. | Туре | Beg.
UT | Dur.
Min. | Max.
UT | Peak
Flux | Р | | 225
226 | Nov.
29
Dec.
01 | 227 | 03 | | | | | | | | | | | | | | | | | | | Ī | | 228 | 05 | 229 | 06 | 0347 | 0443 | 0353 | 2 | N15 | E45 | 4(2c) | SI. | 2 | 0348 | 26 | 5 | 4 | CD | 0348 | 25 | 0351.5 | 384 | | | 230 | 06 | | | | | | | | SL | 1+ | 2347 | 33 | 5 | 3 | *SD | 2346 | 9 | 2348 | 810 | | | 231 | 07 | 0000 | 0030 | | 1+ | S 22 | W25 | 1(1c) | | | | | | | *ESD | 0000 | 0.9 | 0000.2 | 740 | | | 232 | 07 | 233 | 11 | 234 | 12 | 1750 | 1859 | 1806 | 2+ | N15 | W41 | 4(4c) | SL | 1 | 1802 | 28 | 5 | 5 | 6
4 | 1757
1809 | 12
27 | 1803.9 | 94
15 | - | | 235 | 13 | 0227 | 0346 | 0234 | 1 | N15 | E90 | 1(ic) | *SL | 3 | 0156 | 49 | 5 | 6 | *CA | 0153 | 70 | 0232 | 1130 | | | 236 | 14 | 1245 | 1450 | | 2+ | N18 | E78 | 2 (1c) | *SL | 3 | 1233 | 67 | 5 | 9 | | 1227 | 55 | | 1000 | | | 237
238 | 15
19 | 0757 | 1015 | j | 2+ | N20 | E13 | 5(1c) | *S | 3 | 0757 | 23 | 5 | 4 | CD | <0804 | | | | | | 239 | 19 | | 1015 | <u>5</u> | 2+ | N20 | E13 | 5(1c) | | | | | | | *CD | 0917 | 21 | | 632 | | | | | | | | | | | : | | | | | | | | | | | | | | 240 | 19 | 241 | 20 | 0543 | 0606 | <u>6</u> 0545 | 1 | N16 | E00 | 2(1c) | S | 2 | 0545 | 26 | 5 | 3 | *ECD | 0544.3 | 4 | 0545,5 | 636 | | | 242 | 21 | a <u>2334</u>
b <u>2344</u>
c <u>234</u> 9 | 2400
2402
2425 | 2347 | 1 - | N25 | E60
E27
W27 | 1(1c)
1(1c)
1(1c) | | | | | | | CD | 2345 | 5 | 2346.3 | 556 | a
b | | 243 | 22 | 0237 | | | | | E30 | 1(1e) | | | | | | | *CD | 0232.7 | 15 | 0235.3 | 542 | | | 244 | 22 | a <u>0437</u>
b <u>0438</u> | 0505
0443 | 0439 | 1 - | S 21 | W26
E16 | 1(1c)
1(1c) | | | | | | | •CD | 0437 | 7 | 0439 | 505 | a
b | | | | d <u>0438</u> | 0445
0504 | 5 0440
4 0443 | | | W35
E41 | 1(1c)
1(1c) | | | | | | | | | | | | c
d | | 245 | 22 | 1022 | 110 | 1 1035 | 1+ | N19 | W28 | 7(2c) | *S | 3 | 1030 | 22 | 3 | 2 | *CD | 1028 | 6.5 | 1031 | 583 | | 25. This bright and active plage is similar to the region described in note No. 65. The \$\textit{Bp}\$ pspot No. 12800 is one of the largest spots of the year - area equal to 1500 millionths of the solar hemisphere. The region (4289) is a new plage, but it is in the same position where old and dying plage 6210 (in its fifth rotation) had been located. 226. Three of the 8 stations report the start of this storm as a sudden commencement. 227. This large, very bright and very active plage is similar to the region described in notes Nos. 65 and 80. The complex area equal to 1200 millionths of the hemisphere. 229. No event at meter wavelengths is reported at the time of the Type II burst on December 6th at 0400 UT. 230. No known flare is reported at the time of the large 10 cm. burst on December 6th at 2346 UT., therefore plage and spot data for this event are not available. No dynamic spectrum observations exist at the time of the burst, and no event is reported at meter wavelengths. 11. The plage and spot data for this given for event No. 227. No SWF this large 10 cm. event on Deet the burst is of very short duratio of the flare, and the SWF which No. 230 continues through the pe No dynamic spectrum observation to cm. burst. No distinctive event the other single radio frequencies. the other single radio frequencies 233. Four stations start this storm as UT., with a second start on 11th | DATA | | | | | POL | AR CAP | ABSOR | PTION | | | | | | GEOMA | GNETIC | STORMS | | | |------------------------|----------------------------|-------------------------|--|-------------------|---------------------|--------------------------|----------------|-------|------------------------|--|---------------------------|----------------------|--------------------|-----------------------|-----------------|--------|------------------|------------| | Max.
UT | Peak
Flux | Obs. | | Gr.
Day | | Rise to
Peak | Dur. | | Obs. | | | Gr.
Day | Beg.
UT | Dur. | Туре | Int. | No. Sta.
Rep. | Max.
Kp | | 2120 | > 2800 | NBS | | | | | | | | | | | | | - · · - | | | | | | | | | Nov. | 0000 | • | | | _ | ٠ | | | | | | | | | | 1208 | (247) | нні | | 05 | 0200 | ion | 46 | 21 | В | | | | | | | | | | | | 120
120
>180 | UC
N
UC | | | | | | | | | | | | | | | | | | | >30
>30 | CAV | | | | | | | | | : | | | | | | | | | | >301 | | | | | | | | | | | | | | | | | | | 0839
0839 | (693)
(175) | нні
нні | · | | | | | | | | | | | | | | | | | | 72
>180 | U | | | | | | | | | | Nov. | 06
08 | 1821
05 | 1d
4.5d | sc | ms | 15 | 7 | | 0458 | 567 | т | | | | | | | | | | • | 00 | 1,50 | g | ms | 4 | 5 | | 0458
0459
0458,3 | (68)
162
(42) | NAG
SYD
NAG | | | | | | | | | | | | | | | | | | | 25 | N(H) | | | | | | | | | | 13 | 20 | 3d | g | m | 3 | 4 | | 0545
0542 | 483
(138) | T | | | | | | | | | | | | | • | _ | Ū | • | | 0545
0543 | (128)
165 | NAG
SYD
NAG | | | | | | | | | | | | | | | | | | 0544 | 247 | SYD | | | | | | | | | | 17 | 2200 | 14 | g | m | 5 | 5 | | 0325.6
0045 | 542
517 | TK
T | | | | | | | | | | | | | | | | | | 0046 | (31) | NAG | | | | | | | | | | | | | | | | | | 0409
0409.4
0409 | 1960
(200)
184 | T
NAG
SYD | | | | | | | | | | | | | | | | | | 0408,8
0410 | (557)
100
170 | NAG
SYD
N(H) | | | | | | | | | | | | | | | | | | 0759
0759 | (800)
(179) | нні | | | | | | | | | | | | | | | | | | 0735 | 96
180 | HHI
U
N | | | | | | | | | | | | | | | | | | 0903.5 | >120
(543) _[| U
HHI | | | | | | | | | | | | | | | | | | 1108
0904
1107 | (313)
(251)
(179) | нні | | | | | | | | | | | | | | | | | | 1107 | 210
40 | υ | | | | | | | | | | | | | | | | | | | 75
90
> 300 | N | | | | | | | | | | | | | | | | | | | > 540 | U
AOP | F | | | | | | | | | | 24 | 14 | 1.5d | g | ms | 11 | 5 | | 1819 | > 350
> 5900 | N(P) | . | | | | | | | | | | | | | | | | | 1834 | > 3600 | NBS | 26 | 02 | 3.3d | | ms | 14 | 7 | | 0208 | 488 | т | | | | | | | | | | | | -, | 5 | | | • | | sta- | is similar | to that | given for e | event No | o. 219. 1 | No SWF is | s re- | | | the 14 sta | | | | | | | | | | ther
very
ed in | by Ft. Da | vis over t | if the Type
the entire o
eter wavele | bservab | le frequ | ency ran | ge of | | a sudden | ported in ev
commence
dve an even | ment start | on 26th | at 0154 l | JT, and | three | | | | | r, on | of a rise a | ınd fall in
Oburston | base level.
November | 25th at 0 | 416 UT. | is assoc | iated | 224. | This unu
Novembe | ısual event
r 29th at 00 | - a majo
145 UT, - o | r flare
ccurred | and Ty
in a pla | pe II bur
ge whicl | ston
hwas | | | | | 24th | The plage | and spot | n a region :
: data are s
wavelength | imilar t | to that g | dven for a | event | | located :
sun, and | at a very h
which conta
only flare | igh latitud
ined no sp | e, near
ots. This | the we |
st limb of | of the
tance | | | | | red
ough
for | the onset
ported at | of a nois
the time | e storm. I
of the Typ | ∛o know
e IIbu | m 10 cm
rst, and | n. burst i:
no event: | s re-
s are | | region. I
at the ti | ∛oknown S
me of the e | WF and no
event, Am | 10 cm. | events
st is re | are rep | orted
at the | | | | | re b | reported :
is taken fr | om the u | ner single
npublished | radio fi
CRPL | requenc
'check-l | ies. The
ist." | SWF | | very high | n frequenci
wavelength | es, but no | distinct | ive ever | it is rep | orted | | | | | | Type | | | | | | | | 200 M | IC/S DAT | A | | T | | . 0 | |--------------|--|---|-----------------------|----------------------|------|----------------|-----------|----------------|--------------|----------------|----------------|----------|--|----------------------------------|--| | Event
No. | Type I
Time/Max.
Int. | Type III
Time, Int. | Type II
Time/ Int. | Type IV
Time/Int. | Obs. | Freq.
Range | Type | Beg.
UT | Dur.
Min. | Max.
UT | Pea
Flu | k Obs. | Freq.
Mc.s | Туре | Beg.
UT | | 246 | I in progress all day | | | * 1543-
>2337/3 | н | 580-
100 | | | | | | - | | | | | 247 | I in progress
all day | b0030/1 | | | S | | | | | | | | 9500 | ESD | 0025 | | 248 | t _s all day | b0037/1
b0041/3 | | | s | | | | | | | | 9500
2000 | ESD
SD | 0038
0038 | | 249 | I _S all day | g1439/3
G1441-
1442/3
b1444/1
G1445-
1448/2 | | * 1437-
1520/3 | н | 580-
100 | | | | | | | 600
600
545
450
169 | CA
CA
CD
CD
CA | 1440
1444
1439
1438
1439 | | 250 | I in progress
60015-
0016/2 | b0018/1
g0020/1
b0022.5/1 | | | S | | | | | | | | | | | | 251 | I in progress | b0104/1 | | | s | | | | | | | | | | | | 252 | I in progress | b0119.5/1
s0143-
0220/1 | | | s | | | | | | | | | | | | 253 | I in progress | | | | s | | | | | | | | 9500 | CD | 0228 | | 254 | | | | | | | | | | | | | 1 | • | | | 255 | | | | | | | | | | | | | 9500
2000
1420
1000
600
545 | CD
SD
CD
CD
CD
CD | 0434
0434
0436
0434
0437
0432 | | 256 | | | | | | j | CD | 0529.8 | 1 | 05 30.2 | 500 | TK | 9400
2000
1000 | ESD
SD
SD | 0530
0530
0530 | | 257 | I in progress
Ĉ1629/2
C1634-
1639/3 | g1628-
1629/1
G1634-
1638/3
g1643/3
g1646-
1647/1 | | | Н | | CD | 1635 | 5 | | >400 | N | 545
450
167 | CD
ECD
ECD | 1635
1633
1634. | | 258 | I in progress
C1816-
1817/3 | G1815-
1817, 3 | *1822-
1825, 3 | | Ħ | 230-
100 | CD
ECD | 1816
1821.5 | 2.5
3.5 | | > 100
> 224 | N,C
C | 167
167 | ECD
ECD | 1815.
1821. | | 259 | | | | | | | SD | 0246 | 1.2 | 0246.7 | 1000 | тк | 9500
2000
1000
600
545 | ECD
ESD
ECD
ECD
CD | 0245
0245.
0246.
0247
0244 | | 260 | | | | | | | | | | | | | 3750
1000 | SD
CD | 0435
0449, | | 261 | I 2252-
≶2347/1 | g2230/3
b2233/3 | *2230-
2242/3+ | 2232-
2255/3 | н | 330
100 | CD | 2230 | 8 | | >2500 | N | 9500
1420
600
545
450 | ECD
SD
CD
CD
ECD | 2229
2230
2230
2230
2230 | | 262 | | | | | | | | | | | | | | | | | 263 | | | | | | | | | | | | | | | | 259. No flare observations were being made at the time of these large 10 cm, bursts on December 26th at 0245 UT, and 0435 260. and 0449 UT, therefore plage and spot data for these events are not available. No dynamic observations exist at any of these times. At meter wavelengths, a minor burst is reported with event No. 259, but no event is reported with No. 260. The SWF for No. 260 is taken from the unpublished CRPL "check-list." 261. The plage and spot data for this event are similar to that given for event No. 242b. No 10 cm, observations exist at the time of the Type II and Type IV bursts on Dec. 28th at 2230 UT., which were observed by Ft. Davis over a frequency range of 330 - 100 Mc. | R RADIO | DATA | | | - | F | OLAR CAP | ABSORI | PTION | | | G | OMAGN | ETIC ST | ORMS | | | |---------------------------------|--|---|-------------------------------------|------------|-------------|-----------------|--------|--------------|------|------------|--------------|-------|---------|------|------------------|------------| | Dur,
Min, | Max,
UT | Peak
Flux | Obs. | Gr,
Day | Onset
US | Rise to
Peak | Dur. | Peak
Int. | Obs. | Gr.
Day | Beg.
UT | Dur. | Type | Int, | No. Sta.
Rep. | Мах.
Кр | | 4 | 0025.5 | 693 | тк | | | | | | | | | | | | | | | 3 • · | 0038.5
0038.5 | 1052
(14) | TK
NAG | | | | | | | | | | | | | | | 4
14
19
21
9 | 1447 | 80
350
>1200
>3400
>600 | UC
N
NBS
UC | | | | | | | | | | | | | | | 3 | 0229 | 562 | тк | | | | | | | Dec.
25 | 02 | 1.6d | g | m | 3 | 4 | | 20
6
4.5
4
11
13 | 0437
0437.2
0437
0435.1
0444 | 956
(94)
356
(185)
274
> 260 | TK
NAG
SYD
NAG
SYD
N | | | | | | | | | | | | · | 7 | | 1
1
1 | 0530.1
0530.3
0530.3 | (136)
(33)
(22) | NAG
NAG
NAG | | | | | | | | | | | | | | | 5
6
5 | 1635,3
1634,8 | 180
>1900
>3400 | N
NBS
NBS | | | | | | | | | | | | | | | 1.9 | 1816.2
1823 | 3100
> 3000 | NBS | | | | | | | | | | | | | | | 15
2.5
> 3
4
11 | 0246.5
0246.5
0248 | 3250
(1690)
(780)
258
> 300 | TK
NAG
NAG
SYD
N(H) | | | | | | | | | | | | | | | 2
2 | 0436
0450 | (15)
(12) | NAG
NAG | | | | | | | | | | | | | | | 20
7
13
6
15 | 2230
2231
2230 | > 1322
916
156
> 300
> 3600 | TK
SYD
SYD
N
NBS | | | | | | | | | | | | | | | | | | : | | | | | | | | 2000
0115 | | | | 5
10 | 5
6 | ŕ | 2. III 23R